Защищаем кабель правильно! Что говорит ГОСТ?

Содержание

Защищаем кабель грамотно. Изучаем ГОСТы

От правильного выбора устройства защиты и сечения проводников зависит не только надёжная работа подключённых потребителей электроэнергии. Ошибки, допущенные на этом этапе, могут привести к очень серьёзным проблемам – вплоть до пожара.

Весьма непростым и спорным вопросом является выбор автоматического выключателя для защиты кабеля от перегрева. Как автомат защитит от перегрева кабель? Очень просто – он не даст пользователю увеличить ток нагрузки выше дозволенного. Цель статьи – перейти от витиеватых формулировок к конкретным цифрам и методике выбора кабелей и автоматических выключателей.

Зачем это нужно? – спросят некоторые читатели. Ведь в интернете множество таблиц! Дело в том, что не смотря на обилие (переизбыток) информации, до сих пор продолжаются споры. Классический пример: многие электрики «старой закалки» утверждают, что автомата с номиналом 25 А вполне хватит для защиты электрической проводки, выполненной кабелем с сечением жилы 2,5 мм 2 . Другие утверждают, что так делать нельзя, и максимум в данном случае – 16А. Где же истина? Как раз на этом примере и разберём тему.

Правила, допущения и ГОСТы, без которых статья бы не получилась

В таком множестве информации разобраться непросто, особенно учитывая, что обычно не учитываются многие факторы:

  • Тип прокладки,
  • Тип кабеля,
  • Максимально допустимая температура кабеля,
  • Время-токовые характеристики автомата,
  • Особенности нагрузки

Чтобы разобраться с такой сложной темой, нужно обязательно пользоваться нормативно-технической документацией (НТД). Иначе мы останемся на уровне «в интернете написано» и «один блогер сказал».

В статье мы воспользуемся такими документами:

  1. ГОСТ Р 50571.4.43-2012. Электроустановки низковольтные. Требования по обеспечению безопасности. Защита от сверхтока.
  2. ГОСТ Р 50571.5.52-2011. Электроустановки низковольтные. Выбор и монтаж электрооборудования. Электропроводки.
  3. ГОСТ 30331.5-95. Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от сверхтока.
  4. ГОСТ 31996-2012. Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ. Общие технические условия.
  5. ГОСТ 31565-2012. Кабельные изделия. Требования пожарной безопасности.
  6. ГОСТ IEC 60898-1-2020. Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения.
  7. СП 256.1325800.2016. Электроустановки жилых и общественных зданий. Правила проектирования и монтажа.

Ну и, конечно, ПУЭ-7 – куда же мы без «Библии электрика»?

Я не буду дословно цитировать пункты и разделы НТД. Буду только указывать пункт, и пересказывать своими словами. Кому нужно – все документы в открытом доступе!

СамЭлектрик.ру в социальных сетях:

Интересно? Хочешь знать больше? Вступай в группу ВК!

Подписывайтесь! Там тоже интересно!

Чтобы статья не разрослась до неимоверных размеров, предлагаю ограничиться такими исходными данными:

  • Мы говорим о стационарной электропроводке с «моножильными» кабелями в жилых зданиях;
  • Мы говорим о способе прокладки «многожильный кабель в воздухе»;
  • Мы говорим о кабеле с типом исполнения «нг-LS», который должен применяться в жилых зданиях согласно классу пожарной опасности (ГОСТ 31565-2012, табл.2);
  • Мы говорим о розеточных групповых сетях;
  • Мы говорим о фазном напряжении 220 В и о фазных проводниках;
  • Мы говорим о «бытовых» модульных автоматических выключателях (ГОСТ IEC 60898-1-2020);
  • Соединения между жилами сделаны на совесть. Говоря технически, переходным сопротивлением можно пренебречь;
  • Мы не говорим о таком важном аспекте выбора сечения, как о потерях напряжения.

Важно, что мы не рассматриваем специфику работы автоматических выключателей при КЗ. На эту тему я писал в статьях О коротком замыкании, время-токовых характеристиках и селективности автоматических выключателей, а также о применении автоматов с характеристикой «В».

Приведу на всякий случай таблицу из ГОСТ IEC 60898-1-2020 на автоматы:

ГОСТ на автоматы

ГОСТ на автоматы. Время-токовые характеристики

Я уже писал на блоге, что в этом ныне действующем ГОСТе много ошибок, которые перекочевали из его предыдущих версий.

Предупреждаю – будет сложно. Но любое «сложно» состоит из нескольких простых вещей, собранных в систему. Поехали!

На тему статьи мною написано много статей, по ходу буду давать ссылки.

Важное предисловие про минимальное сечения кабеля

Некоторые электрики считают, что сечение токопроводящей жилы (ТПЖ) зависит только от мощности нагрузки. «Я в эту розетку буду только раз в году елочную гирлянду включать, поэтому ШВВП 2х0,75 здесь вполне хватит!». «А у меня в коридоре розетка для роутера, проложил на неё самый тонкий провод, который нашёл на работе, 10 лет работает без проблем, ничего не греется!». Про номинал автомата при этом даже не думают. Не выбивает – и ладно.

Такой подход не только неверен, но и преступен! И дело даже не в установке правильного автомата, а в том, что минимальное сечение ТПЖ никак не зависит от мощности нагрузки. Даже если вы клянётесь на ПУЭ, что ничего мощнее телефонной зарядки в этой розетке никогда не будет, минимальное сечение медной ТПЖ определено в СП 256.1325800.2016 (Табл.15.3). Оно не зависит ни от автомата, ни от тока нагрузки, и равно 2,5 мм 2 .

Для осветительных сетей минимальное сечение жилы кабеля равно 1,5 мм 2 .

В СП 256.1325800.2016 (п.12.6) сказано, что сечение выбирается исходя из расчетного тока нагрузки, и зависит от способа прокладки. В реальной квартирной электропроводке выбор сечений по розеточным линиям невелик – в 99% реальное сечение равно минимальному, то есть 2,5 мм 2 . Ведь пропускная способность стандартной розетки всего 16 А, и нет смысла использовать сечение 4 мм 2 и больше. Только если речь не идет о мощных розетках на стационарные приборы типа калориферов или электроплит. Но там нередко розетки не используют, а подключают кабель непосредственно на клеммы.

Кабель всегда должен быть «самым сильным звеном» в любой электроустановке. А автомат – самым слабым.

Электрощиток с автоматами

Электрощит. Фото для иллюстрации. Обратите внимание на номиналы автоматов. Автор работы и фото – Аким Ильясов, г. Уфа

Что защищает автомат?

Разберёмся для начала, что конкретно защищает автомат — кабель, розетки или электроприборы? Обратимся к ГОСТ Р 50571.4.43. В пункте 430.1 указано, что защита рабочих проводников в случаях перегрузки и КЗ производится устройствами защиты от сверхтоков. При этом устройства защиты проводников не обязательно защищают оборудование, соединённое с проводниками. Защита производится посредством автоматического отключения. То же самое сказано в ГОСТ 30331.5-95 (п.431).

Вывод: автоматический выключатель в первую очередь защищает кабель. То, что подключено после кабеля – розетка, удлинитель на 50 м, ёлочная гирлянда за 150 руб. – защищать тоже нужно, но во вторую очередь. Степень защиты зависит тут только от желания проектировщика.

С другой стороны, пункт 3.1.4 ПУЭ-7 говорит о том, что номинал автоматического выключателя нужно по возможности выбирать наименьшим по расчетным или номинальным токам нагрузки. Иными словами, номинальный ток АВ должен быть выше номинального тока нагрузки. То есть, если вы уверены, что 200 Вт на данной линии – максимум, никто не запретит поставить на неё автомат 1А.

Такой автомат прекрасно защитит розетку, а также гирлянду и настольную лампу, но наш кабель (не забываем, минимальное сечение жилы розеточного кабеля – 2,5 мм 2 ) не будет реализовывать свой потенциал в полной мере. Хотя и будет защищён от сверхтоков на 1000%.

Стоит ли покупать мощный джип, чтобы колесить на нём только по идеальным городским улицам со скоростью 5 км/ч?

В СП 256.1325800.2016 (п.12.6) сказано о двух сторонах этой медали примерно так:

  1. Сечение ТПЖ кабеля выбирается исходя из тока нагрузки, также нужно учитывать способ прокладки и потери напряжения;
  2. Номинал автоматического выключателя должен выбираться, исходя из допустимого тока кабеля. Который, в свою очередь, зависит от сечения.

Углубимся в тему.

Можно ли устанавливать автомат на 25 А для защиты кабеля 2,5 мм 2 ?

Давайте сузим круг наших изысканий, и разберём практический вопрос: как правильно защитить кабель с сечением ТПЖ 2,5 мм 2 ? Какой номинал автомата с этим справится и при каких условиях?

Допустим, мы определили, что расчётный ток в линии – менее 25 А. Для защиты выбираем автомат с номиналом 25 А (ПУЭ-7, 3.1.4). А что с кабелем, какое сечение тут подойдёт?

Предположим, что мы имеем линию, выполненную кабелем ВВГнг-LS с ПВХ изоляцией сечением 3*2,5мм 2 . В ГОСТ 31996-2012 в таблице 19 для этого сечения определяем длительно допустимый ток (допустимую токовую нагрузку). Он составит 27 А для наиболее тяжелых условий прокладки – в воздухе:

Допустимые токовые нагрузки

Допустимые токовые нагрузки кабелей

Далее, обратимся к таблице 18, где указаны максимальные температуры нагрева жил кабеля.

Допустимые температурные нагрузки

Допустимые температурные нагрузки кабелей

Режим перегрузки для кабелей, размещённых на воздухе – это такой режим, при котором допустимая токовая нагрузка умножается на коэффициент 1,16 (ГОСТ 31996-2012, п.10.9).

То есть кабель допускается перегружать всего на 16%. Если превысить это значение, из-за чрезмерного нагрева ТПЖ изоляция кабеля будет быстро стареть (то есть, накапливать необратимые негативные изменения) по таким причинам:

  1. Тепловые причины. При этом будут ухудшаться диэлектрические свойства вследствие ускорения химических реакций.
  2. Механические причины. Неизбежно будут появляться трещины, вызванные усталостью материала.
  3. Химические причины будут обусловлены реакциями окисления. Окисляться будет и ТПЖ, а это приведёт к повышению переходных сопротивлений, и т.д.

Кроме того, есть неприятный факт, что при нагреве проводника его линейное сопротивление увеличивается. А значит – растёт его нагрев.

Определяем, что в нашем случае длительно допустимая температура жил кабеля (при токе 27А) составит 70°С, а в режиме перегрузки (при токе 27*1,16 = 31,3 А) эта температура будет 90°С.

Я принял, что допустимой токовой нагрузке соответствует допустимая температура жил кабеля.

Запомним эту информацию, и перейдем к вопросу согласования тока нагрузки, допустимого тока кабеля и номинального тока автомата.

Необходимость согласованности автоматического выключателя и проводника

Как согласовать токовую нагрузку ТПЖ кабеля и номинал автоматического выключателя? Поставим вопрос более прямо: если длительный допустимый ток кабеля равен 27А, сможет ли его защитить от перегрева автомат с номиналом 25А?

Для этого копнём документацию глубже. В ГОСТ 30331.5-95, в пункте 433.2 имеется требование по координации (согласованности) проводников и устройств защиты от перегрузки. В частности, там сказано, что рабочие характеристики устройства защиты должны соответствовать следующим условиям.

Во-первых, расчетный (рабочий) ток цепи (IВ) должен быть меньше или равен номинальному току защитного устройства (In) , который, в свою очередь, должен быть меньше или равняться длительно допустимому току кабеля (IZ):

Во-вторых, ток, при котором гарантированно сработает автомат за определённое время (I2), должен быть меньше или равняться длительно допустимому току кабеля (Iz), умноженному на коэффициент 1,45:

Читать статью  Линия автоматической штамповки

Но из ГОСТ IEC 60898-1-2020 (табл.7) мы знаем, что ток I2 называется условным током расцепления, при котором автомат обязан сработать менее чем за час. То есть, I2 = 1,45 In.

Соответственно подставив это значения в формулу выше, получаем:

То есть, удивительным образом коэффициент перегрузки кабеля и коэффициент номинального тока автомата оказались равны 1,45, и взаимно сократились. Совпадение? Не знаю. Но из этого следует, что кабель, у которого длительный допустимый ток не больше номинала автомата, при перегрузке на 45% будет обесточен за время менее 1 часа. Выходит, что при токе 1,45 * 25 = 36,2 А наш кабель 2,5 мм 2 с «номиналом» 27 А будет обесточен менее чем за час, если защитить его автоматом 25 А. Хорошо это или плохо?

Не всё так просто. Помните, мы выяснили, что кабель начинает необратимо стареть в режиме перегрузки, когда ток превышает номинал Iz на 16%, а температура при этом повышается до 90°С? Значит, ток почти целый час может быть больше положенного на 45% вместо допустимых 16%! Из этого следует логичный вывод – кабель за это время нагреется более, чем на 90°С, а это приведёт к его преждевременному старению и деградации.

Это как нас с вами заставить вкалывать по 12 часов без выходных. Долго мы протянем?

Наш вывод подтверждается и в примечании к рассмотренному выше пункту 433.2 из ГОСТ 30331.5-95: Защита в соответствии с этим пунктом не обеспечивает полной защиты в некоторых случаях, например от длительного сверхтока, меньшего по значению, чем I2. При этом предполагается, что электрическая сеть спроектирована так, что небольшие перегрузки с большой продолжительностью будут иметь место не часто.

Последнее предложение считаю неуместным в серьезной литературе (такой, как ГОСТ) из-за его размытости. «Небольшие» перегрузки – это на 1%, или на 16, или на 45%? «Большая» продолжительность – это больше часа или больше суток? «Нечасто» – это раз в сутки или раз в год?

Однако, можно сделать такой вывод применительно к бытовой сети, где количество и мощность подключённых приборов неизвестны: в результате определенной комбинации нагрузок, подключенных к данной линии, может возникнуть сверхток, от которого произойдет недопустимая перегрузка и перегрев кабеля.

Продолжаем искать подтверждения нашему выводу. В ГОСТ 50571.4.43-2012 в пункте 433.1 можно найти формулы, которые были рассмотрены выше. Но в Примечании 1 там сказана примечательная фраза: Если защита в соответствии с этим пунктом, возможно, не обеспечивает защиту в определённых случаях, например, от длительного сверхтока меньшего, чем I2, в этих случаях должен рассматриваться вопрос о выборе кабеля с большей площадью поперечного сечения.

Заметьте: уменьшить номинал автомата (In) мы не можем, так как он ограничен снизу расчетным током нагрузки (IВ). Выход предлагается единственный: увеличение площади сечения ТПЖ кабеля.

Можно ограничить мощность подключаемых к штепсельным розеткам потребителей (помните, я приводил в начале статьи пример с ёлочной гирляндой?). Но для этого нужно круглосуточно стоять и охранять эту розетку. И всё равно вы не сможете дать 100% гарантию, что ток в этой линии никогда выйдет за пределы дозволенного. Рано или поздно придут квартиранты или шабашники с удлинителем, бетономешалкой и сварочным аппаратом.

Если человек вам сказал, что он даёт гарантию 100%, то он или мошенник, или просто оторван от реальности.

Вариант, теоретически дающий 100% гарантию недопущения перегрузки кабеля – понизить ток автомата. Точнее, выбрать автоматический выключатель с другим номинальным током. В нашем случае – вместо 25 А выбрать 20 или 16 А.

График допустимых нагрузок кабеля

Много слов утомляют некоторых читателей, поэтому приведу график, построенный на основе вышеизложенного. Идея графика не моя – он приведен в ГОСТ Р 50571.4.43-2012 (Приложение В).

График допустимых нагрузок

График допустимых нагрузок с токами ТПЖ и АВ

На графике указана точка 31,3 А – после этого тока изоляцию кабеля ждёт неминуемое старение. И чем ток выше, чаще и дольше, тем быстрее оно будет происходить. Другая точка – 36,2 А показывает, где автомат сработает менее чем за 1 час. В этом интервале значений тока (отмечено красным отрезком длиной около 5 ампер) защита кабеля обеспечена не будет. Что и требовалось доказать.

Таблица допустимых номиналов автоматов для разных сечений

Я составил табличку, которая поможет лучше ориентироваться в вопросе защиты кабеля. Таблица составлена для трех самых ходовых сечений:

Таблица выбора автомата в зависимости от сечения

Таблица выбора автомата в зависимости от сечения жилы кабеля

Объясняю, как пользоваться таблицей на примере кабеля с сечением жилы 2,5. Как и на графике, красным выделен интервал (почти 5 А), в котором защиты кабеля не будет. Если же выбрать АВ номиналом 20 или 16 А, интервал будет «отрицательной длины» (отмечено зелёным). Это означает, что защита кабеля состоится всенепременно.

Для сечения 1,5 подойдут автоматы вплоть до 16 А. Для 4 мм 2 максимальный автомат – 25 А.

Напоминаю, что эти данные – для идеальных условий, о которых сказано в начале статьи!

Кстати, рекомендую мою статью Характеристики автоматических выключателей в таблицах, в которой я привёл значения основных точек ВТХ ряда номиналов АВ в виде табличных данных. Очень удобно при расчетах!

Что ещё нужно учитывать при выборе кабеля и автомата?

На выбор сечения кабеля и номинала автомата, кроме вышеизложенного, влияет много факторов. Перечислю их в едином списке, поскольку они тесно взаимосвязаны.

  1. Потери напряжения на кабеле. Особенно важно это учитывать на протяженных линиях. Например, если нужно подключить розетку на расстоянии 100 м, то придётся использовать кабель с сечением ТПЖ не менее 4 мм 2 . Но тогда нужно выбирать номинал АВ, ориентируясь на ток нагрузки (обычно 16 А) и низкий ток КЗ в конце линии.
  2. Ток КЗ. Если он имеет низкое значение, то выключение при сверхтоке может длиться очень долго, либо вовсе не произойти. Чтобы всё работало как надо, нужно либо увеличивать сечение кабеля, либо уменьшать номинал и «букву» АВ. Подробно эту тему я рассмотрел в статье «Ток КЗ: размер имеет значение!».
  3. Ток нагрузки. Прежде всего, нагрузкой для кабеля является розетка. И как я уже говорил, можно ориентироваться на самое слабое звено в цепи – розетку или то, что будет к ней подключаться. Поэтому, установка на линии автомата согласно номиналу розетки считается хорошим тоном в электрике.
  4. Подключение освещения. То же, что и в предыдущем пункте – если люстра или группа светильников потребляет ток менее 1 А, то какой смысл ставить на эту линию освещения с кабелем 1,5 мм 2 автомат номиналом 16 А? Вполне достаточно 6 или 4 А.
  5. Пусковые токи. Светодиодные светильники имеют высокий пусковой ток, это надо знать, выбирая номинал АВ. В особо тяжелых случаях нужно подумать о характеристике отключения АВ, либо разделить нагрузку на несколько линий. Также высокий пусковой ток (правда, имеющий другую природу) имеют устройства, содержащие электродвигатели.
  6. Способ прокладки. Если хочется окунуться в море способов прокладки и связанных с ними токовых коэффициентов, пожалуйста: ГОСТ Р 50571.5.52-2011, Приложение В, С. Также смотрите ПУЭ-7, гл.1.3.
  7. Температура окружающей среды. Нагрев АВ и кабелей от внешних источников тепла учитывается при помощи поправочных коэффициентов, которые можно найти у производителей и в ГОСТах. При нагреве номинальный ток АВ и допустимый ток кабеля понижаются. При охлаждении – наоборот. Например, при -5°С кабель сечением 2,5мм 2 может пропускать ток до 50 А (соответственно выбирается и автомат).
  8. Групповая установка автоматов. Механизм тот же, что и в предыдущем пункте – если установить рядом много автоматов, они будут взаимно нагревать друг друга, и их номинальные токи понизятся. То есть график ВТХ сдвинется влево.
  9. Запас. Надёжность и безопасность – превыше всего. Никогда нельзя надеяться, что кабель и автоматы, а также условия окружающей среды и прокладки реально будут такими, как в теории. Если что-то плохое может произойти, оно обязательно произойдёт. И в наших силах снизить вероятность негативных событий всеми разумными методами.

Бонусы

На эту статью меня вдохновил Николай Поляков из команды “ГОСТ+”:

Спасибо! Переходите и подписывайтесь на канал ГОСТ+!

Также благодарю за помощь в написании статьи Валерия Черепанова.

Статья впервые в сокращенном виде была опубликована на электротехническом портале Элек.ру и в бумажном журнале “Электротехнический рынок”.

Защищаем кабель

Защищаем кабель правильно по ГОСТ

Скачать эту статью в журнальном варианте можно тут: • Защищаем кабель правильно! Что говорит ГОСТ / Журнальный вариант статьи в pdf., pdf, 1.18 MB, скачан: 174 раз./

Заключение

Можно взять готовые решения по выбору сечений кабеля и номиналов автоматов, и действовать по проверенному плану. Но нужно всегда знать, на чем основаны эти решения. И знать, где искать ответ на нестандартные задачи.

Надеюсь, я заставил вас задуматься о принципах защиты кабелей. Теперь вы знаете, что на вопрос «Можно ли защитить кабель с сечением жилы 2,5 мм 2 автоматом на 25 А?» невозможно однозначно ответить «Да» или «Нет».

Рекомендую похожие статьи:

  1. Время-токовые характеристики автоматических выключателей в таблицах
  2. Выбор автоматического выключателя
  3. УЗО: Характеристики устройств дифференциальной защиты
  4. Температурные режимы. Что будет, если нагреть автоматический выключатель?
  5. Селективность на модульных автоматах: как достичь невозможного?
  6. Почему лучше ставить автоматы с характеристикой “В”?
  7. Силовые кабели. Подробный обзор

Защищаем кабель правильно! Что говорит ГОСТ?

От правильного выбора устройства защиты и сечения проводников зависит не только надежная работа подключенных потребителей электроэнергии. Ошибки, допущенные на этом этапе, могут привести к очень серьезным проблемам — вплоть до пожара.

Электромонтажник

Весьма непростым и спорным вопросом является выбор автоматического выключателя для защиты кабеля от перегрева. Как автомат защитит от перегрева кабель? Очень просто — он не даст пользователю увеличить ток нагрузки выше дозволенного. Цель статьи — перейти от витиеватых формулировок к конкретным цифрам и методике выбора кабелей и автоматических выключателей.

Зачем это нужно? — спросят некоторые читатели. Ведь в интернете множество таблиц! Дело в том, что, несмотря на обилие (переизбыток) информации, до сих пор продолжаются споры. Классический пример: многие электрики «старой закалки» утверждают, что автомата с номиналом 25 А вполне хватит для защиты электрической проводки, выполненной кабелем с сечением жилы 2,5 мм 2 . Другие утверждают, что так делать нельзя, и максимум в данном случае — 16 А. Где же истина? Как раз на этом примере и разберем эту тему.

В таком множестве информации разобраться непросто, особенно учитывая, что обычно не учитываются многие факторы:

  • тип прокладки;
  • тип кабеля;
  • максимально допустимая температура кабеля;
  • время-токовые характеристики автомата;
  • особенности нагрузки.

Чтобы разобраться с такой сложной темой, нужно обязательно пользоваться нормативно-технической документацией (НТД). Иначе мы останемся на уровне «в интернете написано» и «один блогер сказал».

В статье мы воспользуемся такими документами:

  1. ГОСТ Р 50571.4.43-2012. Электроустановки низковольтные. Требования по обеспечению безопасности. Защита от сверхтока.
  2. ГОСТ Р 50571.5.52-2011. Электроустановки низковольтные. Выбор и монтаж электрооборудования. Электропроводки.
  3. ГОСТ 30331.5-95. Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от сверхтока.
  4. ГОСТ 31996-2012. Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ. Общие технические условия.
  5. ГОСТ 31565-2012. Кабельные изделия. Требования пожарной безопасности.
  6. ГОСТ IEC 60898-1-2020. Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения.
  7. СП 256.1325800.2016. Электроустановки жилых и общественных зданий. Правила проектирования и монтажа.
Читать статью  Виды управляющих воздействий ПА

Ну и, конечно, ПУЭ-7 — куда же мы без «Библии электрика»?

Я не буду дословно цитировать пункты и разделы НТД. Буду только указывать пункт и пересказывать своими словами. Кому нужно — все документы в открытом доступе!

Чтобы статья не разрослась до неимоверных размеров, предлагаю ограничиться такими исходными данными:

  • мы говорим о:
    — стационарной электропроводке с «моножильными» кабелями в жилых зданиях;
    — способе прокладки «многожильный кабель в воздухе»;
    — кабеле с типом исполнения «нг-LS», который должен применяться в жилых зданиях согласно классу пожарной опасности (ГОСТ 31565-2012, табл. 2);
    — розеточных групповых сетях;
    — фазном напряжении 220 В и о фазных проводниках;
    — «бытовых» модульных автоматических выключателях (ГОСТ IEC 60898-1-2020);
  • соединения между жилами сделаны на совесть. Говоря технически, переходным сопротивлением можно пренебречь;
  • мы не говорим о:
    — таком важном аспекте выбора сечения, как о потерях напряжения;
  • мы не рассматриваем специфику работы автоматических выключателей при КЗ. О коротком замыкании, времятоковых характеристиках и селективности я говорил, например, в статье про применение автоматических выключателей с характеристикой «В».

Предупреждаю — будет сложно. Но любое «сложно» состоит из нескольких простых вещей, собранных в систему. Поехали!

Важное предисловие про минимальное сечение кабеля

Некоторые электрики считают, что сечение токопроводящей жилы (ТПЖ) зависит только от мощности нагрузки:

  • «Я в эту розетку буду только раз в году елочную гирлянду включать, поэтому ШВВП 2×0,75 здесь вполне хватит!».
  • «А у меня в коридоре розетка для роутера, проложил на нее самый тонкий провод, который нашел, 10 лет работает без проблем!».

Про номинал автомата при этом даже не думают.

Такой подход не только неверен, но и преступен! И дело даже не в установке правильного автомата, а в том, что минимальное сечение ТПЖ никак не зависит от мощности нагрузки. Даже если вы клянетесь, что ничего мощнее телефонной зарядки в этой розетке никогда не будет, минимальное сечение медной ТПЖ определено в СП 256.1325800.2016 (Табл. 15.3). Оно не зависит ни от автомата, ни от тока нагрузки и равно 2,5 мм 2 .

Для осветительных сетей минимальное сечение жилы кабеля равно 1,5 мм 2 .

В СП 256.1325800.2016 (п. 12.6) сказано, что сечение выбирается исходя из расчетного тока нагрузки и зависит от способа прокладки. В ре-альной квартирной электропроводке выбор сечений по розеточным линиям невелик — в 99 % реальное сечение равно минимальному, то есть 2,5 мм 2 . Ведь пропускная способность стандартной розетки всего 16 А, и нет смысла использовать сечение 4 мм 2 и больше. Только если речь не идет о мощных розетках на стационарные приборы типа калориферов или электроплит. Но там нередко розетки не используют, а подключают кабель непосредственно на клеммы.

Кабель всегда должен быть «самым сильным звеном» в любой электроустановке.

Что защищает автомат?

Разберемся для начала, что конкретно защищает автомат — кабель, розетки или электроприборы? Обратимся к ГОСТ Р 50571.4.43. В пункте 430.1 указано, что защита рабочих проводников в случаях перегрузки и КЗ производится устройствами защиты от сверхтоков. При этом устройства защиты проводников не обязательно защищают оборудование, соединенное с проводниками. Защита производится посредством автоматического отключения. То же самое сказано в ГОСТ 30331.5-95 (п. 431).

Вывод: автоматический выключатель в первую очередь защищает кабель. То, что подключено после кабеля — розетка, удлинитель, елочная гирлянда, — защищать тоже нужно, но во вторую очередь. Степень защиты зависит тут только от желания проектировщика.

С другой стороны, пункт 3.1.4 ПУЭ-7 говорит о том, что номинал автоматического выключателя нужно по возможности выбирать наименьшим по расчетным или номинальным токам нагрузки.

Иными словами, номинальный ток АВ должен быть выше номинального тока нагрузки. То есть если вы уверены, что 200 Вт на данной линии — максимум, никто не запретит поставить на нее автомат 1 А. Такой автомат прекрасно защитит розетку, а также гирлянду и настольную лампу, но наш кабель (не забываем, минимальное сечение жилы розеточного кабеля — 2,5 мм 2 ) не будет реализовывать свой потенциал в полной мере. Хотя и будет защищен от сверхтоков на 1000 %.

Стоит ли покупать мощный джип, чтобы колесить на нем только по идеальным городским улицам со скоростью 5 км/ч?

В СП 256.1325800.2016 (п. 12.6) сказано о двух сторонах этой медали примерно так: «Сечение ТПЖ кабеля выбирается исходя из тока нагрузки, также нужно учитывать способ прокладки и потери напряжения. Номинал автоматического выключателя должен выбираться, исходя из допустимого тока кабеля. Который, в свою очередь, зависит от сечения».

Углубимся в тему.

Можно ли устанавливать автомат на 25 А для защиты кабеля 2,5 мм 2 ?

Давайте сузим круг наших изысканий и разберем практический вопрос: как правильно защитить кабель с сечением ТПЖ 2,5 мм 2 ? Какой номинал автомата с этим справится и при каких условиях?

Допустимые токовые нагрузки кабелей с медными жилами с изоляцией из поливинилхлоридных пластикатов и полимерных композиций, не содержащих галогенов

Допустим, мы определили, что расчетный ток в линии — менее 25 А. Для защиты выбираем автомат с номиналом 25 А (ПУЭ-7, 3.1.4). А что с кабелем, какое сечение тут подойдет?

Предположим, что мы имеем линию, выполненную кабелем ВВГнг-LS с ПВХ-изоляцией сечением 3×2,5 мм 2 . В ГОСТ 31996-2012 в таблице 19 для этого сечения определяем длительно допустимый ток (допустимую токовую нагрузку). Он составит 27 А для наиболее тяжелых условий прокладки — в воздухе.

Далее обратимся к таблице 18, где указаны максимальные температуры нагрева жил кабеля.

Допустимые температуры нагрева токопроводящих жил кабеля

Режим перегрузки для кабелей, размещенных на воздухе, — это такой режим, при котором допустимая токовая нагрузка умножается на коэффициент 1,16 (ГОСТ 31996-2012, п.10.9).

То есть кабель допускается перегружать всего на 16 %. Если превысить это значение, изоляция кабеля будет быстро стареть (накапливать необратимые негативные изменения) по таким причинам:

  • Тепловые
    При этом будут ухудшаться диэлектрические свойства вследствие ускорения химических реакций.
  • Механические
    Неизбежно будут появляться трещины, вызванные усталостью материала.
  • Химические
    Будут обусловлены реакциями окисления.

Определяем, что в нашем случае длительно допустимая температура жил кабеля (при токе 27 А) составит 70 °С, а в режиме перегрузки (при токе 27×1,16=31,3 А) эта температура будет 90 °С.

Запомним эту информацию и перейдем к вопросу согласования тока нагрузки, допустимого тока кабеля и номинального тока автомата.

Необходимость согласованности автоматического выключателя и проводника

Как согласовать токовую нагрузку ТПЖ кабеля и номинал автоматического выключателя? Поставим вопрос более прямо: если длительный допустимый ток кабеля равен 27 А, сможет ли его защитить от перегрева автомат с номиналом 25 А? Для этого копнем документацию глубже. В ГОСТ 30331.5-95 в пункте 433.2 имеется требование по координации (согласованности) проводников и устройств защиты от перегрузки. В частности, там сказано, что рабочие характеристики устройства защиты должны соответствовать следующим условиям.

  • Во-первых, расчетный (рабочий) ток цепи (Iв) должен быть меньше или равен номинальному току защитного устройства (In), который, в свою очередь, должен быть меньше или равняться длительно допустимому току кабеля (Iz): IвIn Iz.
  • Во-вторых, ток, при котором гарантированно сработает автомат за определенное время (I2), должен быть меньше или равняться длительно допустимому току кабеля (Iz), умноженному на коэффициент 1,45: I21,45 Iz.
  • Но из ГОСТ IEC 60898-1-2020 (табл. 7) мы знаем, что ток I2 называется условным током расцепления, при котором автомат обязан сработать менее чем за час. То есть I2=1,45 In.
  • Соответственно, подставив это значения в формулу выше, получаем: InIz.

То есть удивительным образом коэффициент перегрузки кабеля и коэффициент номинально-го тока автомата оказались равны 1,45 и взаимно сократились. Совпадение? Не знаю. Но из этого следует, что кабель, у которого длительный допустимый ток не больше номинала автомата, при перегрузке на 45 % будет обесточен за время менее 1 часа. Выходит, что при токе 1,45×25 = 36,2 А наш кабель 2,5 мм 2 с «номиналом» 27 А будет обесточен менее чем за час, если защитить его автоматом 25 А. Хорошо это или плохо?

Не все так просто. Помните, мы выяснили, что кабель начинает необратимо стареть в режиме перегрузки, когда ток превышает номинал Iz на 16 %, а температура при этом повышается до 90 °С? Значит, ток почти целый час может быть больше положенного на 45 % вместо допустимых 16 %! Из этого следует логичный вывод — кабель за это время нагреется более чем на 90 °С, а это приведет к его преждевременному старению и деградации.

Это как нас с вами заставить вкалывать по 12 часов без выходных. Долго мы протянем?

Наш вывод подтверждается и в примечании к рассмотренному выше пункту 433.2 из ГОСТ 30331.5-95: «Защита в соответствии с этим пунктом не обеспечивает полной защиты в некоторых случаях, например, от длительного сверх-тока, меньшего по значению, чем I2. При этом предполагается, что электрическая сеть спроектирована так, что небольшие перегрузки с большой продолжительностью будут иметь место нечасто».

Работа с оборудованием электрощитка

Последнее предложение считаю неуместным в серьезной литературе (такой как ГОСТ) из-за его размытости. «Небольшие» перегрузки — это на 1 или на 16, или на 45 %? «Большая» продолжительность — это больше часа или больше суток? «Нечасто» — это раз в сутки или раз в год?

Однако можно сделать такой вывод применительно к бытовой сети, где количество и мощность подключенных приборов неизвестны: в результате определенной комбинации нагрузок, подключен-ных к данной линии, может возникнуть сверхток, от которого произойдет недопустимая перегрузка и перегрев кабеля.

Продолжаем искать подтверждения нашему выводу. В ГОСТ 50571.4.43-2012 в пункте 433.1 можно найти формулы, которые были рассмотрены выше. Но в Примечании 1 там сказана приме-чательная фраза: «Если защита в соответствии с этим пунктом, возможно, не обеспечивает защиту в определенных случаях, например, от длительного сверхтока меньшего, чем I2, в этих случаях должен рассматриваться вопрос о выборе кабеля с большей площадью поперечного сечения».

Заметьте: уменьшить номинал автомата (In) мы не можем, так как он ограничен снизу расчетным током нагрузки (Iв). Выход предлагается единственный: увеличение площади сечения ТПЖ кабеля.

Можно ограничить мощность подключаемых к штепсельным розеткам потребителей (помните, я приводил в начале статьи пример с елочной гирляндой?). Но для этого нужно круглосуточно стоять и охранять эту розетку. И все равно вы не сможете дать 100 % гарантию, что рано или поздно ток в этой линии выйдет за пределы дозволенного.

100 % гарантию могут дать только сотрудники отделов продаж.

Вариант, дающий 100 % гарантию недопущения перегрузки кабеля, — понизить ток автомата. Точнее, выбрать автоматический выключатель с другим номинальным током. В нашем случае — вместо 25 А выбрать 20 или 16 А.

График

Много слов утомляют некоторых читателей, поэтому приведу график, построенный на основе вышеизложенного. Идея графика не моя — он приведен в ГОСТ Р 50571.4.43-2012 (Приложение В).

На графике указана точка 31,3 А — после этого тока изоляцию кабеля ждет неминуемое старение. И чем ток выше, тем быстрее оно будет происходить. Другая точка — 36,2 А показывает, где автомат сработает менее чем за 1 час. В этом интервале значений тока (отмечено красным отрезком длиной около 5 ампер) защита кабеля обеспечена не будет. Что и требовалось доказать.

Таблица допустимых номиналов автоматов

Я составил табличку, которая поможет лучше ориентироваться в вопросе защиты кабеля. Таблица составлена для трех самых ходовых сечений.

Таблица допустимых номиналов автоматов для трех самых ходовых сечений

Объясняю, как пользоваться таблицей на примере кабеля с сечением жилы 2,5. Как и на графике, красным выделен интервал (почти 5 А), в котором защиты кабеля не будет. Если же выбрать АВ номиналом 20 или 16 А, интервал будет «отрицательной длины» (отмечено зеленым). Это означает, что защита кабеля состоится всенепременно.

Читать статью  Автоматические линии, понятия, назначение и структуры

Для сечения 1,5 подойдут автоматы вплоть до 16 А. Для 4 мм 2 максимальный автомат — 25 А.

Расчёт тока и номинала АВ

Что еще нужно учитывать при выборе кабеля и автомата?

На выбор сечения кабеля и номинала автомата, кроме вышеизложенного, влияет много факторов. Перечислю их в едином списке, поскольку они тесно взаимосвязаны.

Потери напряжения на кабеле

Особенно важно это учитывать на протяженных линиях. Например, если нужно подключить розетку на расстоянии 100 м, то придется использовать кабель с сечением ТПЖ не менее 4 мм2. Но тогда нужно выбирать номинал АВ, ориентируясь на ток нагрузки (обычно 16 А) и низкий ток КЗ в конце линии.

Ток КЗ

Если он имеет низкое значение, то выключение при сверхтоке может длиться очень долго либо вовсе не произойти. Чтобы все работало как надо, нужно либо увеличивать сечение кабеля, либо уменьшать номинал и «букву» АВ. Подробно эту тему я рассмотрел в статье «Ток КЗ: размер имеет значение!».

Ток нагрузки

Прежде всего, нагрузкой для кабеля является розетка. И, как я уже говорил, можно ориентироваться на самое слабое звено в цепи — розетку или то, что будет к ней подключаться. Поэтому установка на линии автомата согласно номиналу розетки считается хорошим тоном в электрике.

Подключение освещения

То же, что и в предыдущем пункте, — если люстра или группа светильников потребляет ток менее 1 А, то какой смысл ставить на эту линию освещения с кабелем 1,5 мм 2 автомат номиналом 16 А? Вполне достаточно 6 или 4 А.

Пусковые токи

Светодиодные светильники имеют высокий пусковой ток, это надо знать, выбирая номинал АВ. В особо тяжелых случаях нужно подумать о характеристике отключения АВ либо разделить нагрузку на несколько линий.

Способ прокладки

Если хочется окунуться в море способов прокладки и связанных с ними токовых коэффициентов, пожалуйста: ГОСТ Р 50571.5.52-2011, Приложение В, С. Также смотрите ПУЭ-7, гл. 1.3.

Температура окружающей среды

Нагрев АВ и кабелей от внешних источников тепла учитывается при помощи поправочных коэффициентов, которые можно найти у производителей и в ГОСТах. При нагреве номинальный ток АВ и допустимый ток кабеля понижаются. При охлаждении — наоборот. Например, при −5 °С кабель сечением 2,5 мм 2 может пропускать ток до 50 А (соответственно выбирается и автомат).

Групповая установка автоматов

Механизм тот же, что и в предыдущем пункте, — если установить рядом много автоматов, они будут взаимно нагревать друг друга и их номинальные токи понизятся. То есть график ВТХ сдвинется влево.

Запас

Надежность и безопасность — превыше всего. Никогда нельзя надеяться, что кабель и автоматы, а также условия окружающей среды и прокладки реально будут такими, как в теории. Если что-то плохое может произойти, оно обязательно произойдет. И в наших силах снизить вероятность негативных событий всеми разумными методами.

Заключение

Можно взять готовые решения по выбору сечений кабеля и номиналов автоматов и действовать по проверенному плану. Но нужно всегда знать, на чем основаны эти решения. И знать, где искать ответ на нестандартные задачи.

Надеюсь, я заставил вас задуматься о принципах защиты кабелей. Теперь вы знаете, что на вопрос: «Можно ли защитить кабель с сечением жилы 2,5 мм 2 автоматом на 25 А?» «невозможно однозначно ответить «да» или «нет».

Источник: Александр Ярошенко, автор блога SamElectric.ru. Опубликовано в журнале «Электротехнический рынок» № 1 (103), 2022 год

Защита кабельных линий автоматическими выключателями

Защищаем кабель правильно! Что говорит ГОСТ?

Журнал №5 (71) 2011 год

Релейная защита

Неселективность работы устройств релейной защиты в сетях 6–10, 20 кВ может привести не только к сбоям в электроснабжении потребителей, но и к серьезным авариям в сетях. При этом масштабы разрушения оборудования могут быть весьма значительны, а восстановительный ремонт потребует больших затрат.
В предлагаемой статье украинских авторов приведена схема защиты с применением селективной и неселективной токовой отсечки без выдержки времени при коротких замыканиях в кабельных линиях напряжением 6–10, 20 кВ.
Неселективность работы защиты предлагается исправить применением устройств автоматического включения резервного источника питания или автоматического повторного включения.

КАБЕЛЬНЫЕ ЛИНИИ 6–10, 20 кВ
Повышение надежности с использованием быстродействующих защит

Альфред Манилов,
Андрей Барна,
инженеры УК «Метрополия»,
г. Киев

На отходящих кабельных линиях к распределительным устройствам (РУ), как правило, предусматривается максимальная токовая защита (МТЗ) с выдержкой времени. Длительность короткого замыкания (КЗ), отключаемого МТЗ, достигает 1,0–2,5 с. Время автоматического включения резервного питания (АВР) составляет 1,5–3 с. При такой выдержке времени ухудшаются условия самозапуска электродвигателей, действуют технологические защиты, нарушается электроснабжение неповрежденных линий, присоединенных к одной секции с поврежденной линией.

Отключение повреждения МТЗ c выдержкой времени обуславливает увеличение сечения кабеля для обеспечения его термической стойкости.

Увеличение тока КЗ при изменении схемы сети 6–10, 20 кВ вызывает необходимость демонтажа нестойких к токам КЗ кабелей и прокладки новых кабелей, что требует больших материальных затрат. Для повышения устойчивости нагрузки и уменьшения сечения кабеля по условию термической стойкости, а также для исключения замены существующих кабелей или прокладки новых кабелей параллельно существующим, необходимо уменьшить продолжительность КЗ. Этого можно добиться применением быстродействующей защиты.

СПОСОБЫ ЗАЩИТЫ

Селективная токовая отсечка без выдержки времени на кабельных линиях может оказаться малоэффективной, т.к. ее чувствительность определяется при трехфазном КЗ в начале линии в максимальном режиме. Зона ее действия определяется при металлическом КЗ, поэтому она охватывает только часть линий.

Продольная дифференциальная и дистанционная защиты требуют значительных материальных затрат. Зона действия первой ступени дистанционной защиты без выдержки времени не охватывает всю линию и уменьшается при КЗ через переходное сопротивление.

Представляется целесообразным для повышения надежности электроснабжения и исключения необходимости прокладки новых кабелей применять неселективную токовую отсечку без выдержки времени.

ИСПОЛЬЗОВАНИЕ АПВ ИЛИ АВР

Исправление неселективного действия токовой отсечки может быть осуществлено устройствами автоматического включения резерва (АВР) или автоматического повторного включения (АПВ).

Следует указать, что исправление неселективного действия отсечки путем АВР или АПВ регламентируется пунктами 3.2.93 и 3.3.2 ПУЭ [1].

Однако АПВ включает питающую линию при КЗ на ней. Для исключения действия АПВ при КЗ на питающей линии необходимо предусмотреть его блокировку. Ток срабатывания реле блокировки определяется из выражения:

I СБ = k отс1 I (2) кз мин , (1)

где I (2) кз мин – минимальный ток двухфазного КЗ на шинах приемной подстанции;
k отс – коэффициент отстройки (k отс = 0,9).

В соответствии с пунктом 3.2.93 ПУЭ [1] на кабельных линиях 6–10 кВ с односторонним питанием, подключенным к шинам электростанции или к подстанциям с синхронными двигателями большой мощности, КЗ следует отключать токовой отсечкой без выдержки времени, если оно сопровождается снижением напряжения на зажимах генераторов или электродвигателей до 0,5–0,6 U н .

Фактическое время отключения определяется собственным временем отключения выключателя и временем срабатывания защит, что составляет приблизительно 0,1–0,2 с. Это значительно меньше времени действия МТЗ, которая составляет 1,0–2,5 с. При отключении КЗ с выдержкой времени возможно нарушение синхронной параллельной работы электрических машин с энергосистемой.

Ток срабатывания защиты определяется из выражения:

Защищаем кабель правильно! Что говорит ГОСТ?

, (2)

где U С мин – напряжение питающей энергосистемы в минимальном режиме ( U С мин = 0,95 U ном );
U ост – допустимое остаточное напряжение ( U ост = 0,5–0,6 U ном );
Z э – эквивалентное сопротивление, значение которого зависит от сопротивления системы и числа включенных генераторов;
k н – коэффициент надежности (k н = 1,2).

При отсутствии токовой отсечки и выполнении только МТЗ (реле 9KA, 10KA на рис. 1) на отходящей линии, АПВ на питающей линии не предусматривается. В этом случае целесообразно выполнение АВР на приемной подстанции.

Рис. 1. Токовая отсечка и МТЗ в сети 6–10 кВ. Поясняющая и принципиальная схемы

Крупнее

Крупнее

Ток срабатывания токовой отсечки без выдержки времени на питающей линии, когда необходимо обеспечить только термическую стойкость кабеля при отсутствии токовой отсечки на предыдущем участке, определяется из выражения:

Защищаем кабель правильно! Что говорит ГОСТ?

, (3)

где S – сечение кабеля;
c – коэффициент теплового состояния. Для кабелей с алюминиевыми жилами c = 85, для кабелей с медными жилами с = 129;
t откл1 – длительность КЗ при действии МТЗ;
n – число параллельно включенных кабелей;
k отс2 – коэффициент отстройки (k отс2 = 1,2).

ДЕЙСТВИЕ ЗАЩИТЫ

При КЗ на отходящей линии, например в точке К1 на линии Л2, срабатывают токовые реле 7КА и/или 8КА. При КЗ в точке К1 возможно отключение питающей линии раньше, чем отходящей линии. Для ее отключения контакты выходного реле 2KL предусматриваются с выдержкой времени 0,1–0,2 с на размыкание.

При КЗ реле блокировки не срабатывает, и поэтому АПВ на питающей линии не блокируется. При КЗ в точке К2 на питающей линии срабатывают токовые реле 1КА и/или 2КА. После замыкания контактов этих реле срабатывают реле 1KL с действием на отключение выключателя Q1, а также 3КА и/или 4КА, размыкающие контакты которых блокируют действие АПВ. Реле 1KL в цепи АПВ принято с замыкающими контактами с выдержкой времени на размыкание для обеспечения действия АПВ после отключения выключателя Q1.

Применение избирательного АПВ на кабельной линии Л1 не представляется возможным, т.к. токи КЗ на кабельных линиях Л1 и Л2 соизмеримы. АПВ при КЗ на линии Л1 малоэффективно.

Для резервирования токовой отсечки целесообразно действие МТЗ (реле 5KA, 6KA) без выдержки времени при снижении напряжения на шинах в месте установки защиты до 0,5–0,6 U ном .

Вместо применения неселективной отсечки целесообразно применение селективной токовой отсечки с выдержкой времени (реле 1КТ), если при этом обеспечивается устойчивость нагрузки и стойкость кабеля к токам КЗ. Ток срабатывания токовой отсечки с выдержкой времени должен быть отстроен от тока срабатывания токовой отсечки трансформатора и определен из выражения:

I со2 = k нс ( I сз тр + I н макс ) , (4)

где k нс – коэффициент надежности согласования (k нс = 1,3);
I сз тр – наибольший ток срабатывания токовой отсечки на линиях к трансформатору;
I н макс – максимальный ток нагрузки, за исключением линии, с которой производится согласование.
Токовая отсечка удовлетворяет чувствительности при k ч ≥ 1,5. Выдержка времени реле 1КТ принимается 0,3–0,4 с.

Допустимый ток КЗ для кабеля зависит от его сечения и длительности КЗ и может быть определен из выражения:

Защищаем кабель правильно! Что говорит ГОСТ?

, (5)

где t откл2 – длительность КЗ при действии отсечки, которая составляет 0,02 с при отсутствии промежуточного реле и 0,1 с при его наличии.

Например, для кабеля с алюминиевыми жилами сечением 95 мм 2 при t откл = 0,1 с допустимый ток КЗ составляет 25 553 А, что больше допустимого тока КЗ, равного 20 кА, выключателей шкафов КРУ.

Таким образом, применение токовой отсечки без выдержки времени в большинстве случаев может обеспечить термическую стойкость кабелей.

При применении токовой отсечки с выдержкой времени допустимый ток КЗ для кабеля с алюминиевыми жилами сечением 95 мм 2 составит 14 950 А и 12 800 А соответственно при времени отключения 0,3 с и 0,4 с.

Следует учесть, что наиболее распространенным видом по- вреждения в электрических сетях с изолированной нейтралью 6–10, 20 кВ является однофазное замыкание на землю (ОЗЗ). При действии защиты от ОЗЗ на сигнал возрастает вероятность замыкания разноименных фаз в разных точках электрической сети, что приводит к режиму двойного замыкания на землю (ДЗЗ), междуфазному короткому замыканию (МКЗ), многоместному замыканию на землю (МЗЗ).

Для обеспечения быстродействия защиты кабельных линий при указанных видах повреждений целесообразно применение защиты, которая отключает одно из двух повреждений при ДЗЗ и все повреждения на присоединениях при МЗЗ, мощность нулевой последовательности которых направлена в одну сторону [2].

ВЫВОДЫ

Для повышения надежности электроснабжения потребителей целесообразно применение селективной или неселективной токовой отсечки на кабельных линиях к РУ, МТЗ, действующее при снижении напряжения на шинах до 0,5–0,6 U ном , быстродействующей защиты от двойных, многоместных и междуфазных КЗ.

ЛИТЕРАТУРА

  1. Правила устройства электроустановок. М.: Энергоатомиздат, 1986. 648 с.
  2. Манилов А.М. Защита от двойных, многоместных и коротких замыканий на землю в сетях 6–10 кВ // Энергетик. 2010. №1. С. 34.

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Источник https://samelectric.ru/spravka/zashhishhaem-kabel-gramotno-izuchaem-gosty.html

Источник https://www.elec.ru/publications/praktikum-dlja-professionalov/7214/

Источник http://news.elteh.ru/arh/2011/71/08.php

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: