Что легче алюминий или металл

Содержание

Что легче алюминий или металл

Про алюминий интересно

Основное отличие — алюминий против стали

Металлы — это химические элементы, которые имеют характерные свойства, такие как пластичность, пластичность и электропроводность. Большинство элементов в периодической таблице являются металлами. Одним из основных применений металлов является производство металлических сплавов, таких как сталь. Основное отличие алюминия от стали в том, что алюминий металл в то время как Сталь — это металлический сплав.

Ключевые области покрыты

1. Что такое алюминий
— Производство, Недвижимость, Использование
2. Что такое сталь
Типы, компоненты, свойства, использование
3. В чем разница между алюминием и сталью
— Сравнение основных различий

Ключевые термины: алюминий, пластичность, ковкость, металл, металлический сплав, нержавеющая сталь, сталь

Что легче алюминий или металл

Что такое алюминий

Алюминий (Al) — это мягкий металл серебристо-серого цвета. Имеет блестящий вид Алюминий имеет легкий вес по сравнению с другими металлами. Он податлив, то есть может деформироваться под давлением. Эти свойства алюминия сделали его для использования в авиастроении.

Алюминий обладает высокой устойчивостью к коррозии, поскольку он может образовывать защитный слой на своей поверхности путем окисления в оксид алюминия. Кроме того, это хороший проводник тепла и электричества. Степень пластичности высока для алюминия; это означает, что алюминий может быть легко расплавлен и вытянут в проволочные структуры. Алюминиевая фольга непроницаема, даже если она очень тонкая.

Металлический алюминий получают из оксида алюминия (оксида алюминия). Процесс рафинирования алюминия от глинозема известен как процесс Холла-Херулта. Процесс включает в себя следующие шаги.

  • Растворение глинозема в расплавленном криолите.
  • Разделение глинозема на его элементы путем электролиза.

Что легче алюминий или металл

Рисунок: кубик алюминия

Что такое сталь

Сталь представляет собой металлический сплав, состоящий из железа, углерода и нескольких других элементов, таких как марганец, вольфрам, фосфор и сера. Процентное содержание углерода в стали может варьироваться. По количеству присутствующего углерода сталь можно разделить на несколько групп, таких как:

  • Мягкая сталь
  • Высокая углеродистая сталь
  • Низкоуглеродистая сталь

Иногда сталь имеет некоторые другие элементы с высоким процентным содержанием, чем углерод. Хороший пример тому — нержавеющая сталь. Нержавеющая сталь содержит очень мало углерода, но вместе с железом содержит много хрома. Различные желаемые свойства могут быть получены путем смешивания различных металлических и неметаллических элементов с железом в различных количествах. Типы стали в соответствии с различными присутствующими элементами;

  • Углеродистая сталь — основные компоненты — железо и углерод
  • Легированная сталь — основными компонентами являются железо, углерод и марганец
  • Нержавеющая сталь — железо и хром с небольшим количеством углерода
  • Инструментальная сталь — вольфрам, молибденоподобные металлы присутствуют с железом

Сталь твердая, очень прочная и пластичная. Но он не устойчив к коррозии (за исключением нержавеющей стали, которая изготавливается путем смешивания хрома с железом, что придает свойства коррозионной стойкости). Сталь легко подвергается коррозии при воздействии влажной среды. Поэтому происходит ржавчина.

Что легче алюминий или металл

Рисунок 2: Ржавчина стали

Разница между алюминием и сталью

Определение

Алюминий: Алюминий — это мягкий металл серебристо-серого цвета.

Сталь: Сталь — это металлический сплав, состоящий из железа, углерода и нескольких других элементов.

Устойчивость к коррозии

Алюминий: Алюминий устойчив к коррозии и коррозии.

Сталь: Сталь не устойчива к коррозии, и ржавчина происходит легко.

плотность

Алюминий: Алюминий — это мягкий металл с относительно низкой плотностью.

Сталь: Сталь — твердосплавный сплав с высокой плотностью.

Вес

Алюминий: Алюминий — это легкий металл.

Сталь: Сталь имеет больший вес, чем алюминий.

свариваемость

Алюминий: Алюминий трудно поддается сварке.

Сталь: Сталь легко сваривается.

Температура плавления

Алюминий: Алюминий имеет более низкую температуру плавления.

Сталь: Сталь имеет очень высокую температуру плавления.

Заключение

У металлов и металлических сплавов есть много применений в промышленном масштабе. Алюминий и сталь являются такими элементами. Основное различие между алюминием и сталью заключается в том, что алюминий — это металл, а сталь — это металлический сплав.

Рекомендации:

1. «Что такое алюминий?» Наш бизнес | Боксит Ресурс Лимитед. Н.п., н.д. Web.

Титан против алюминия, в чем разница?

Что легче алюминий или металл

Сегодня самые разные отрасли ищут инновационные способы максимизации своей прибыли. Ожидается, что эти инновационные способы позволят снизить себестоимость продукции, уменьшить вес продукции и снизить общее потребление энергии. Следовательно, легкие металлы, включая титан и алюминий, все чаще относят к стали. Поэтому, чтобы получить идеальное решение для материалов в свете этого, важно иметь представление об их прочности. В этой статье представлена ​​самая важная информация путем сравнения каждого металла с использованием различных характеристик.

Давайте сравним 17 различий между титаном и алюминием

В производственной сфере, когда вы думаете о свойствах материалов для деталей, на ум приходят прочность и легкость. По сути, титан и алюминий в данном случае естественным образом приходят на ум дизайнерам. Интересно, что и титан, и алюминий отвечают другим важным требованиям, таким как отличная термостойкость и коррозионная стойкость. Чтобы сделать идеальный выбор для вашего проекта, мы будем использовать различные свойства для сравнения алюминия и титана. Они включают:

Титан против алюминия: элементный состав

Титан против алюминия-алюминия-1

Чтобы отличить титан от алюминия, очень важен элементный состав. Это связано с тем, что некоторые компоненты могут не потребоваться из-за их реакционной способности по отношению к окружающей среде или из-за дополнительных характеристик, которые они могут придавать металлу в целом. Примеры таких характеристик могут включать коррозионную стойкость, вес и многое другое. Для сравнения, известно, что титан содержит множество элементов, включая азот, водород, кислород, углерод, железо и никель. С титаном в качестве основного элементного состава другие компоненты могут варьироваться в составе от 0.013 до 0.5%.

Читать статью  Виды цветных металлов: сферы их применения и особенности обработки

С другой стороны, алюминий состоит из множества компонентов, включая алюминий в качестве основного состава, кремний, цинк, магний, марганец, медь, железо, титан, хром, цирконий и многие другие.

Титан против алюминия: коррозионная стойкость

Титан против алюминия-TItanium-1

Коррозионная стойкость — еще одно свойство, которое можно использовать для сравнения титана и алюминия. И титан, и алюминий обладают превосходными свойствами коррозионной стойкости. Однако один из них более устойчив, чем другой, и в результате он более предпочтителен, когда коррозионная стойкость является одним из основных соображений в проекте.

Титан инертен и, как следствие, обладает высокой коррозионной стойкостью. Из-за своей инертной природы титан является наиболее биосовместимым металлом с впечатляющим применением в медицинской промышленности. Это применение можно найти в производстве хирургических изделий, в то время как сплавы Ti 6-4 хорошо выдерживают воздействие соленой среды и широко применяются в морской промышленности. С другой стороны, сплавы алюминия образуют слой оксидов, что делает материал не вступающим в реакцию с коррозионными элементами. Однако коррозия такого сплава теперь зависит от водных/атмосферных условий, таких как температура, химические вещества в воздухе и химический состав.

Титан против алюминия: электропроводность

Электропроводность — это способность материала пропускать поток электронов из-за падения потенциала. Для определения электропроводности материала в качестве стандарта для оценки электропроводности используется медь.

Когда титан сравнивается с проводимостью меди, он показал около 3.1% проводимости меди. В результате следует, что титан является хорошим проводником электричества и его нельзя использовать там, где главным фактором является хорошая проводимость. Хотя титан не является хорошим проводником, его можно использовать в качестве хорошего резистора. С другой стороны, алюминий демонстрирует 64% проводимости меди. Это означает, что в ситуации, когда требуется электропроводность, алюминий предпочтительнее титана.

Титан против алюминия: теплопроводность

Титан против алюминия-алюминия-2

Теплопроводность материала – это его способность передавать или проводить тепло. Чтобы материал был хорошим радиатором, он должен иметь высокую степень проводимости, а материал с низкой теплопроводностью — хороший изолятор. Это явление называется скоростью переноса за счет проводимости через единицу толщины через единицу материала при единичном температурном градиенте.

Для сравнения, алюминий имеет высокую теплопроводность 1460 БТЕ-дюйм/час-фут²-°F (210 Вт/мК) по сравнению с титаном 118 БТЕ-дюйм/час-фут²-°Fм (17.0 Вт/мК). Вот почему ему отдают предпочтение, когда речь идет о таких устройствах, как теплообменники, посуда и радиаторы.

Титан против алюминия: температура плавления

Температура плавления металла, известная как точка плавления, представляет собой температуру, при которой такой металл начинает переходить из твердой фазы в жидкую. При этой температуре твердая фаза металла и жидкая фаза такого металла находятся в равновесии. Как только материал достигает этого температурного уровня, его можно легко формовать и использовать для термических применений.

Для сравнения, титан имеет более высокую температуру плавления 1650–1670 ° C (3000–3040 ° F), поэтому он используется в качестве тугоплавкого металла. С другой стороны, алюминий имеет более низкую температуру плавления по сравнению с титаном 660.37 ° C (1220.7 ° F). Следовательно, в области термостойкости титан более применим.

Титан против алюминия: твердость

Твердость металла — это его сравнительная величина, которая помогает описать его реакцию на травление, вдавливание, деформацию или царапание его поверхности. В основном это можно сделать с помощью инструмента, называемого индентором. В результате инденторная машина или инструменты определяют стоимость металла для определения его прочности. В то время как твердость титана по Бринеллю 70 HB больше, чем у чистого алюминия 15 HB, некоторые сплавы алюминия показали более высокую твердость, чем титан. Примеры включают AA7075, состояние T7 и T6, AA6082, состояние T5 и T6 и другие.

С другой стороны, титан легко деформируется при царапинах или вмятинах. Это можно исправить, потому что титан образует исключительно твердую поверхность, образуя оксидный слой, чтобы сформировать слой оксида титана, который сопротивляется большинству сил проникновения. В тех случаях, когда твердость является одним из основных требований, лучшим выбором будет титан.

Титан против алюминия: плотность

В измерении титан и алюминий легкие, но по определенным причинам. В сравнении с плотностью алюминия (2712 кг/м 3 ) ниже плотности титана (4500 кг/м 3 ). Плотность алюминия значительно легче, хотя титан примерно на две трети тяжелее алюминия. Это означает, что пользователям любого металла потребуется меньше титана. Для получения физической прочности алюминия необходима лишь часть титана. Вот почему титан используется в авиационных реактивных двигателях и космических кораблях. Известно, что его легкий вес и прочность снижают затраты на топливо.

Поэтому, в зависимости от применения, титан или алюминий являются идеальным выбором. Например, в ситуации, когда важно соотношение прочности и веса, используется титан, а там, где нужен только легкий вес, используется алюминий.

Титан против алюминия: цена

Для того, чтобы сравнить цены на титан и алюминий, основной кусок круглой четверть дюйма, длиной в фут обоих металлов сравниваются вместе. При сравнении алюминиевый стержень стоит меньше, чем титановый стержень, поэтому это показывает, что между обоими металлами существует разница в стоимости. В дополнение к стоимости, большей с самого начала, с титаном очень сложно работать по сравнению с алюминием, и в результате он удорожает производственный процесс.

Другое дело, что шлифовка, гибка и сварка титана дело тонкое, требующее высокого профессионализма. С другой стороны, с алюминием легко работать, поэтому он дешевле и экономически эффективен для большинства применений.

Титан против алюминия: долговечность

Долговечность материала остается его способностью функционировать без использования чрезмерного ремонта или технического обслуживания, когда на материал воздействуют проблемы нормальной эксплуатации. Без сомнения, и титан, и алюминий долговечны и могут использоваться в течение более длительного периода. Титан очень жесткий и прочный, и его оправы могут служить десятилетиями без каких-либо признаков износа при правильном уходе.

Кроме того, титан обеспечивает достаточную гибкость, чтобы помочь ослабить вибрацию дороги, и может чувствовать себя хлипким при воздействии тяжелой нагрузки, такой как туристические корзины. С другой стороны, алюминий также доказывает свою долговечность в экстремальных условиях транспортировки, особенно когда прочность, безопасность и долговечность имеют решающее значение.

Читать статью  Один из самых легких металлов магний является главной

Титан против алюминия: обрабатываемость

Обрабатываемость — это сравнительная оценка металла, позволяющая определить, насколько хорошо он реагирует на нагрузку при механической обработке, включая штамповку, токарную обработку, фрезерование и многое другое. Оценка обрабатываемости такого металла используется для определения типа используемого метода обработки. Интересно, что токарно-фрезерные станки с ЧПУ — это проверенные временем методы изготовления деталей из титана и алюминия. Их можно изготовить менее чем за день с соблюдением допусков +/- 0.005 дюйма (0.13 мм). Когда требуется быстрое изготовление деталей, алюминий является идеальным выбором, так как он экономически выгоден при высоком качестве.

Однако механическая обработка может быть несколько ограничена, когда речь идет о геометрии, поскольку чрезвычайно сложные конструкции требуют различных решений, независимо от выбранного материала. Еще один фактор, который следует учитывать при выборе материала для механической обработки, — это отходы механической обработки. Следовательно, фрезерование лишнего материала подходит для недорогого алюминия, но не идеально для дорогого титана. В результате производители часто предпочитают изготавливать прототипы из алюминия, а затем переходят на титан для изготовления деталей.

Титан против алюминия: формуемость

С точки зрения формуемости алюминий более пластичен, чем титан. Все формы алюминия легко превращаются в готовые детали с использованием самых разных методов. Алюминий можно резать с использованием многих процессов в зависимости от формы и формы материала.

Его также можно резать различными типами пил, в то время как лазер, плазма или гидроабразивная резка производят готовые размеры, которые могут иметь сложные формы и формы. Хотя титан поддается формованию и не так поддается формованию, как алюминий, алюминий является идеальным выбором, когда формуемость имеет решающее значение для успеха проекта.

Титан против алюминия: свариваемость

Когда дело доходит до сварки, которая представляет собой способность материала к сварке, оба металла могут быть сварены, а также могут быть сварены или соединены вместе. Однако либо титан, либо алюминий лучше поддаются сварке, чем другие.

Для сравнения, сварка титана требует большего профессионализма, поскольку она всегда рассматривается как специальность внутри специальности. С другой стороны, алюминий хорошо поддается сварке и используется для широкого спектра применений. Таким образом, если свариваемость является одним из основных требований при выборе материала, алюминий будет идеальным выбором.

Титан против алюминия: предел текучести

Предел текучести материала – это максимальное напряжение, при котором материал начинает необратимо деформироваться. Это свойство можно использовать, чтобы отличить титан от алюминия. При сравнении становится очевидным, что коммерчески чистый титан (> 99% Ti) представляет собой металл с низкой и средней прочностью, который не очень подходит для конструкций или двигателей самолетов. Он демонстрирует предел текучести высокочистого титана в диапазоне от 170 МПа до примерно 480 МПа, что считается низким для тяжелонагруженных авиационных конструкций.

С другой стороны, чистый алюминий имеет предел текучести в диапазоне от 7 МПа до примерно 11 МПа, в то время как сплавы алюминия имеют предел текучести в диапазоне от 200 МПа до 600 МПа.

Титан против алюминия: прочность на растяжение

Предел прочности металла является наивысшим (предельным) на кривой инженерного напряжения-деформации. Это называется максимальным напряжением, которое может быть выдержано, когда материал подвергается растяжению. Предел прочности при растяжении при температуре окружающей среды титана и его сплавов составляет от 230 МПа для самой мягкой марки технически чистого титана до 1400 МПа для высокопрочных сплавов.

Кроме того, предел прочности титана варьируется от 170 МПа до 1100 МПа в зависимости от сорта и состояния. С другой стороны, сплавы алюминия обладают гораздо большей прочностью, чем чистый алюминий. Чистый алюминий обладает пределом прочности при растяжении 90 МПа, а для некоторых термообрабатываемых сплавов алюминия он может быть увеличен до более чем 690 МПа.

Титан против алюминия: прочность на сдвиг

Стойкость металла к нагрузке сдвига до того, как компонент разрушится при сдвиге, называется прочностью на сдвиг. Обычно это происходит на плоскости, параллельной направлению действия силы. Напряжение сдвига титана составляет от 40 до 45 МПа в зависимости от свойств сплава, тогда как прочность на сдвиг алюминия составляет от 85 до примерно 435 МПа. Следовательно, если прочность на сдвиг является одной из основных причин выбора материала, некоторые марки алюминия могут быть предпочтительнее титана.

Титан против алюминия: цвет

Титан против цвета алюминия

При различении или определении разницы между титаном и алюминием важен цвет материала. Это поможет распознать материал, чтобы избежать использования неподходящего металла для вашего проекта. Для отличия алюминий имеет серебристо-белый цвет, цвет которого варьируется от серебристого до тускло-серого в зависимости от поверхности материала. Этот внешний вид обычно ближе к серебру для гладких поверхностей. С другой стороны, титан имеет серебристый оттенок, который становится темнее при освещении.

Титан против алюминия: приложения

Титан и алюминий используются в самых разных областях. Это применимо представляет собой возможный способ отличить оба металла друг от друга. Применение титана и алюминия указано ниже:

Титан

Титан применяется различными способами, в том числе в качестве легирующего элемента в стали, уменьшающего размер зерна, а также в качестве раскислителя и в нержавеющей стали для снижения содержания углерода. Он встречается почти везде в промышленном пространстве, в том числе:

  • Пигменты, покрытия и добавки (краски, зубная паста, бумага и пластик)
  • Морская и аэрокосмическая промышленность (шасси, брандмауэры, важные детали конструкции, гидравлическая система,
  • Промышленность (клапаны, технологические сосуды, теплообменники, резервуары, целлюлозно-бумажная промышленность, ультразвуковая сварка, мишени для распыления и многое другое.
  • Потребительские и архитектурные товары (спортивные товары, оправы для очков, велосипеды, огнестрельное оружие, лопаты, запчасти для ноутбуков и многое другое)
  • Ювелирные изделия (для пирсинга, часов, колец и многого другого)
  • Медицина (зубные имплантаты, хирургические инструменты, хирургические инструменты и многое другое)

Что легче алюминий или металл

Алюминий

Алюминий обычно используется в различных отраслях промышленности из-за его впечатляющей коррозионной стойкости. Алюминий существует в различных сплавах, что заметно улучшает его механические свойства, особенно при отпуске. Например, наиболее распространенный алюминиевый сплав в виде фольги и банок для напитков содержит от 92% до примерно 99% алюминия. К основным областям применения алюминия относятся:

  • Транспорт (самолеты, железнодорожные вагоны, велосипеды, автомобили, грузовики, морские суда, космические корабли и многое другое)
  • Упаковка (банки, рамки, фольга,)
  • Строительство и строительство (окна, сайдинг, кровля, двери, строительная проволока, обшивка и многое другое)
  • Приложения, связанные с электричеством (двигатели, трансформаторы, генераторы, сплавы проводников, генераторы и многое другое)
  • Предметы домашнего обихода (кухонная утварь, мебель и многое другое)
  • Оборудование и машины (трубы, инструменты, технологическое оборудование и многое другое)
Читать статью  Выдающиеся металлы (чистые)⁠⁠

Магний: металл легче алюминия

Что легче алюминий или металл

Подавляющая часть производимого в мире магния идет на легирование алюминиевых сплавов и только около 15 % – на конструкционные изделия, в основном в виде отливок. Магний и его сплавы применяются в виде деталей автомобилей, в том числе, колесных дисков, элементов промышленного оборудования, кухонного оборудования, деталей компьютеров и мобильных телефонов и, даже, лестниц [1].

Магний легко поддается литью, механической обработке и сварке. Он обладает относительно высокой электрической и тепловой проводимостью. Магниевые сплавы имеют очень хорошую способность к поглощению механической энергии: магниевые отливки находят применение в качестве изделий для работы в условиях высоких вибраций.

Коррозия магния

Многие годы одним из главных недостатков магниевых сплавов являлась коррозия. Магний занимает самую высокую анодную позицию в гальванической серии. Поэтому, как показано, на рисунке 1, может подвергаться сильной коррозии.

Что легче алюминий или металл

Рисунок 1 – Сильно корродированная магниевая деталь [1]

Проблемы магния с коррозией происходят из-за сильного влияния примесных элементов, таких как, железо, никель и медь. Рисунок 2 показывает, как сильно влияет содержание железа в магнии на его подверженность коррозии. Однако применение высокочистых магниевых сплавов приводит к достижению уровня коррозионной стойкости, близкой к тому, который имеют конкурирующие алюминиевые литейные сплавы (рисунок 3).

Что легче алюминий или металл

Рисунок 2 – Влияние содержания железа в магнии
на его коррозионную стойкость [1]

Что легче алюминий или металл

Рисунок 3 – Сравнение коррозионной стойкости
литейных алюминиевых и магниевых сплавов [1]

Металлургия магния

Кристаллическая структура и свойства

Чистый магний имеет гексагональную плотноупакованную кристаллическую структуру, которая ограничивает скольжение при комнатной температуре по основным плоскостям. При комнатной температуре магниевые сплавы легко поддаются нагартовке со значительным снижением пластических свойств. При повышенных температурах становятся рабочими дополнительные плоскости скольжения и поэтому деформируемые магниевые сплавы обрабатывают формовкой при температурах выше 200 ºС, обычно в интервале от 345 до 510 ºС в зависимости от сплава.

В ходе механической деформации в деформируемых сплавах образуется кристаллографическая текстура, что приводит к анизотропии механических свойств. Например, катаный лист с пределом прочности при растяжении 220 МПа и 2 % относительного удлинения, которые замерены параллельно направлению прокатки, могут показывать более высокие механические свойства (например, соответственно, 260 МПа и 8 %) при измерении их перпендикулярно направлению прокатки.

Кроме того, предел текучести при сжатии для изделий, полученных методами обработки металлов давлением, составляет только около 40-70 % от предела текучести при растяжении. В ходе горячей обработки отдельные кристаллы деформируются непосредственно по основным плоскостям скольжения и эти основные плоскости скольжения разворачиваются так, что они становятся ориентированными параллельно направлению деформационной обработки. Такое расположение зерен приводит к снижению прочности при сжатии. Поскольку в отливках такая текстура не образуется, то предел текучести при сжатии отливок примерно равен пределу текучести при растяжении. По этой причине, а также из-за того, что изделия из деформируемых сплавов имеют более высокую стоимость, чем аналогичные алюминиевые изделия, отливки из магниевых сплавов применяются намного шире, чем другие виды магниевых изделий.

Добавки алюминия, цинка и циркония

Магний имеет весьма низкую температуру плавления (650 ºC), что повышает его подверженность к ползучести при повышенных температурах. Однако, путем усовершенствованных методов легирования стойкость магниевых сплавов к ползучести может быть значительно повышена. Самыми важными легирующими добавками для магния являются алюминий, цинк и цирконий. Алюминий обеспечивает упрочнение за счет создания в магнии твердого раствора и расширения интервала затвердевания, что делает сплав более удобным для литья. При добавлении алюминия в магний его прочность постоянно возрастает до достижения содержания алюминия 10 %, но пик относительного удлинения возникает примерно при 3 % алюминия:

  • Магниевые сплавы с 3 % алюминия имеют максимальную пластичность
  • Магниевые сплавы с 9 % алюминия обладают максимальной прочностью.
  • Магниевые сплавы с 6 % алюминия обладают лучшей комбинацией прочности и пластичности.

Цинк ведет себя аналогично алюминию:

  • Пластичность достигает максимума при добавках цинка в количестве 3 %
  • Хорошее сочетание прочности и пластичности достигается при 5 % цинка.

Однако цинк является причиной горячего растрескивания, если его содержание превышает 1 % в сплавах с содержанием алюминия от 7 до 10 %. Цинк, кроме этого, повышает коррозионную стойкость при комбинировании с вредными примесями железом и никелем. Цинк также применяют совместно с цирконием, редкоземельным элементом, или торием для получения термически упрочняемых магниевых сплавов.

Марганец и кремний

Для повышения коррозионной стойкости магниевых сплавов Mg-Al и Mg-Al-Zn применяют добавки марганца для удаления железа за счет образования безвредных интерметаллических соединений. Количество марганца, которое может быть добавлено, ограничено 1,5 % из-за его низкой растворимости в магнии.

Кремний значительно повышает текучесть расплавленного магния, увеличивая, тем самым, его способность к литью. Однако в присутствии железа кремний снижает коррозионную стойкость магния. Кремний также обеспечивает повышение стойкости к ползучести.

Цирконий – измельчитель зерна

Цирконий является мощным измельчителем зерна, как это показано на рисунке 4. Однако цирконий нельзя применять в комбинации с алюминием или марганцем, так как он образует хрупкие интерметаллические соединения, которые «уничтожают» пластичность. Выдающаяся эффективность циркония в измельчении зерна литого магния может быть объяснена сильной схожестью кристаллической структуры и параметров атомной решетки этих двух элементов.

Что легче алюминий или металл

Рисунок 4 – Измельчение зерен магния цирконием [1]

Цирконий является такой важной легирующей добавкой, что была разработана целая серия магниево-циркониевых сплавов без присутствия в них алюминия. Циркониевые добавки обычно держат ниже 0,8 %, так как при более высоких концентрациях он легко образует соединения с железом, алюминием, кремнием, углеродом, кислородом и азотом, а также реагирует с водородом в виде гидрида, который является не растворимым в магнии.

Железо и никель

Элементы железо и никель являются вредными примесями, которые значительно снижают коррозионную стойкость. Медь также часто рассматривается, вместе с железом и никелем, как загрязнение, но в некоторых магниевых сплавах она применяется как легирующий элемент. Железо является самым проблемным из этих трех, так как никель и медь более легко контролировать путем выбора степени чистоты исходных материалов. Железо контролируют путем добавок MnCl2 в расплав в ходе литья.

Деформируемые и литейные сплавы

Хотя магниевые сплавы производят как в виде деформируемых, так и литейных сплавов, но литейные сплавы применяют намного более широко. Некоторые из деформируемых сплавов упрочняются путем холодной деформации, тогда как другие – путем термической обработки c упрочнением по механизму старения.

Литейные сплавы применяются в различных состояниях: литейном, отожженном или состаренном. Эти сплавы сами по себе обычно подразделяются на два класса: сплавы с алюминием и сплавы с цирконием. Пределы текучести при растяжении магниевых сплавов обычно находятся в интервале от 70 до 345 МПа, пределы прочности – от 140 до 380 МПа, а относительное удлинение от 1 до 15 %.

  1. Elements of Metallurgy and Engineering Alloys / ed. F.C. Campbell, ASM International, 2008
  • ← Previous Сплавы алюминиевые деформируемые
  • Сортировка алюминиевого лома по сплавам Next →

Источник https://ru.strephonsays.com/difference-between-aluminium-and-steel

Источник https://www.dekmake.com/ru/%D1%82%D0%B8%D1%82%D0%B0%D0%BD-%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2-%D0%B0%D0%BB%D1%8E%D0%BC%D0%B8%D0%BD%D0%B8%D1%8F/

Источник https://aluminium-guide.com/magnij-metall-legche-alyuminiya/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: