2.5 Методы интенсификации доменного процесса
Под интенсификацией доменного процесса понимают увеличение скорости его протекания. Мерой интенсивности хода доменной печи является количество чугуна, получаемое в единицу времени в расчете на единицу полезного объема доменной печи. Коэффициент использования полезного объема доменной печи к. и. п. о. определяется как частное от деления полезного объема печи Vпол (м 3 ) на суточную производительность печи Т (т) чугуна/сутки
Чем меньше этот показатель, тем интенсивнее протекает процесс, интенсивнее ход доменной печи.
Увеличить интенсивность хода доменной печи можно двумя путями: 1) созданием условий, при которых в горн доменной печи в единицу времени можно подать большее количество дутья (кислорода), расходуемое на горение углерода горючего, и 2) созданием условий, обеспечивающих снижение расхода кокса на единицу выплавляемого чугуна, если количество дутья, поступающее в горн в единицу времени не снижается или снижается в меньшей мере, чем расход кокса.
При увеличении количества дутья (кислорода), подаваемого в горн в единицу времени, соответственно увеличивается сгорающее в единицу времени количество углерода, а следовательно, увеличивается и производительность печи. При уменьшении относительного расхода горючего и неизменном количестве дутья производительность печи также возрастает вследствие увеличения рудной нагрузки на кокс.
Наиболее высокая степень интенсификации процесса достигается, когда одновременно с увеличением количества дутья имеется возможность уменьшить и относительный расход кокса в подачу.
Увеличение интенсивности хода доменной печи путем увеличения расхода дутья (кислорода) в единицу времени предполагает улучшение газопроницаемости столба шихты. Это может быть достигнуто повышением прочности агломерата, отсевом мелких фракций и улучшением однородности гранулометрического состава шихтовых материалов, повышением давления газов в рабочем пространстве печи, снижением относительного выхода шлака и улучшением его физических свойств. Данные по влиянию различных технологических факторов на технико-экономические показатели доменной плавки представлены в таблице 2.
Увеличение интенсивности хода доменной печи путем снижения относительного расхода кокса предполагает уменьшение тепловых затрат на процесс и применение заменителей кокса в роли теплоносителя и восстановителя. Уменьшение тепловых затрат на процесс достигается улучшением подготовки сырья. Глубокое обогащение, производство легковосстановимого офлюсованного и прочного агломерата позволяют вести процесс с низким выходом шлака, исключением затрат тепла на разложение сырого флюса, наиболее выгодным сочетанием прямого и непрямого восстановления и обеспечением равномерного нагрева. Применение высоконагретого дутья уменьшает расход углерода-теплоносителя, а вдувание в горн углеводородсодержащих добавок уменьшает расход углерода-восстановителя.
Основными методами интенсификации доменного процесса являются:
1) совершенствование способов подготовки и улучшение качества сырых материалов; 2) высокотемпературный нагрев дутья; 3) увлажнение дутья; 4) обогащение дутья кислородом; 5) вдувание в горн углеводородсодержащих добавок; 6) комбинирование дутья; 7) повышение давления газов в рабочем пространстве доменной печи.
Наиболее важной является подготовка сырья к плавке. Ни один из методов интенсификации доменного процесса не может дать максимального эффекта при плохом качестве сырья.
Таблица 2 – Влияние качества шихты и технологических факторов на производительность доменной печи и удельный расход кокса
Наименование параметров | Изменение, % | |
расход кокса | производи-тельность | |
Повышение содержания Fe на 1% в | ||
железоpудной части в пpеделах: | ||
до 50% | -1,4 | +2,4 |
50-55% | -1,2 | +2 |
55-60% | -1,0 | +1,7 |
Повышение расхода металлодобавок на 1 кг/т | -0,03 | +0,05 |
Уменьшение расхода сыp. известняка на 1 кг/т | -0,05 | +0,05 |
Уменьшение содержания мелочи в ж.p.ч. на 1% | -0,5 | +1 |
Уменьшение содержания золы в коксе на 1% | -1,3 | +1,3 |
Уменьшение содержания сеpы в коксе на 0,1% | -0,3 | +0,3 |
Повышение прочности кокса по М25 на 1% | -0,6 | +0,6 |
Уменьшение истираемости кокса по М10 на 1% | -2,8 | +2,8 |
Уменьшение содержания Si в чугуне на 0,1% | -1,2 | +1,2 |
Уменьшение содержания Mn в чугуне на 0,1% | -0,2 | +0,2 |
Уменьшение содержания S в чугуне на 0,01% | -1,0 | +1,0 |
Уменьшение содержания P в чугуне на 0,1% | -0,6 | +0,6 |
Повышение температуpы дутья на 1 ˚С | ||
пpи O2 в дутье до 25% | ||
800-900 | -0,05 | +0,05 |
900-1000 | -0,04 | +0,04 |
1000-1100 | -0,03 | +0,03 |
пpи O2 в дутье >25% | ||
800-900 | -0,04 | +0,04 |
900-1000 | -0,03 | +0,03 |
1000-1100 | -0,025 | +0,025 |
Обогащение дутья кислоpодом на 1% до 25% | +0,2 | +2,4 |
25-30% | +0,3 | +2,1 |
Коэффициент замены кокса пpиpодным газом | ||
до 60 м 3 /т | +0,6 | |
60-100 м 3 /т | +0,5 | |
100-150 м 3 /т | +0,4 | |
Повышение давления под колошником на 1 кПа | -0,02 | +0,1 |
Уменьшение времени пpостоев на 1% | -0,5 | +1,5 |
Уменьшение времени тихого хода на 1% | -0,5 | +1,0 |
Уменьшение задеpжки выпусков на 1% | -0,05 | +0,1 |
Уменьшение влжности дутья на 1 г/м 3 при | ||
расходе дутья, м3/т: | ||
1500-1600 | -0,2 | +0,1 |
1000-1100 | -0,15 | +0,07 |
Нагрев дутья
Снижение расхода горючего при переходе от холодного дутья к нагретому или от менее нагретого дутья к более нагретому происходит в результате действия двух причин: 1) замены части тепла, выделяемого при сгорании углерода у фурм, теплом нагретого дутья и 2) изменений в доменном процессе, которые вызывают изменения в тепловом балансе плавки в сторону уменьшения расхода тепла. Количество тепла, вносимое нагретым дутьем на единицу выплавляемого чугуна, определяется уравнением
где Vд – объем дутья на единицу чугуна, м 3 ; сд – теплоемкость дутья, кдж/(м 3 ×град);
tд– температура дутья, °С.
Получаемая от нагрева дутья экономия тепла в виде горючего больше количества тепла, вносимого в печь нагретым дутьем, или, другими словами, тепло нагретого дутья заменяет такое количество горючего, которое при сгорании выделило бы большее количество тепла, чем вносится дутьем. Объясняется это тем, что тепло нагретого дутья не сопровождается образованием дополнительного количества газов, которые, уходя из доменной печи, уносили бы часть тепла. Следовательно, тепло нагретого дутья практически полностью используется в нижней части доменной печи и расходуется на прямое восстановление элементов, перевод серы в шлак и нагрев чугуна и шлака. Получаемое при сгорании у фурм углерода тепло в отличие от тепла нагретого дутья в доменной печи используется не полностью, так как часть его уносится из печи газами, образовавшимися при сгорании кокса, а часть теряется с охлаждающей водой и в атмосферу.
Изменения в тепловом балансе при нагреве дутья, влияющие на расход кокса, сводятся к следующему:
Читайте также Восстановление марганца, кремния, фосфора и других элементов
1. При повышении нагрева дутья уменьшается относительный расход кокса, а следовательно, уменьшается и количество газа на единицу чугуна. Меньшее количество газа, встречая то же количество железорудных материалов, передает им то же, что и ранее, количество тепла. В результате газ охладится больше и уйдет из печи с более низкой температурой. Таким образом, меньшее количество менее нагретого колошникового газа унесет меньше тепла из печи, увеличивая тепловой к. п. д. печи.
2. Уменьшение расхода кокса с повышением нагрева дутья при неизменном его количестве увеличивает производительность печи, а это значит, что в расчете на единицу чугуна уменьшаются тепловые потери с охлаждающей водой и в атмосферу через кладку печи. Эта статья также экономит тепло, увеличивая к.п.д. печи.
3. С уменьшением относительного расхода горючего уменьшается количество шлака вследствие уменьшения количества золы кокса и расхода флюса на ее ошлакование. Чем меньше количество шлака, тем меньше расход тепла на его нагрев. Кроме того, уменьшается расход тепла на испарение влаги и шлакование серы, так как их меньше вносится коксом. Эта статья также экономит тепло.
4. При повышении нагрева дутья возрастает температура в горне, поэтому более нагретые чугун и шлак уносят из печи больше тепла. Расход тепла увеличивается еще и потому, что при уменьшении расхода кокса и повышении температуры в горне возрастают степень прямого восстановления железа и переход кремния в чугун.
Относительная экономия тепла в доменной печи получаемая нагретом:
где Е – экономия тепла в доменной печи, отнесенная к общему расходу тепла на единицу чугуна;
q– алгебраическая сумма разностей всех статей расхода тепла на единицу чугуна при обычном (или менее нагретом) и нагретом дутье, кДж;
W – общий расход тепла в печи на единицу чугуна, кДж.
Экономия тепла и экономия кокса, не пропорциональна повышению температуры дутья, т.е. не одинакова при повышении температуры дутья на одно и то же число градусов по следующим причинам.
1. С увеличением нагрева дутья уменьшается относительный расход кокса, на сжигание которого требуется меньшее количество дутья, следовательно, выражение Vдсдtд, входящее в числитель уравнения, уменьшается, уменьшая значение величины Е.
2. С увеличением нагрева дутья уменьшается и величина q, которая при определенной температуре дутья (разной для разных условий плавки) может стать даже отрицательной и в такой мере, что числитель уравнения превратится в ноль. В этом случае экономии тепла при увеличении нагрева дутья не будет.
3. Чем выше нагрев дутья, тем полнее используется тепло в доменной печи, т. е. выше тепловой к. п. д. печи kT за счет уменьшения потерь тепла с колошниковым газом, так как при уменьшении относительного расхода кокса уменьшаются количество колошникового газа и его температура, уменьшаются тепловые потери с охлаждающей водой и в атмосферу в расчете на единицу чугуна вследствие увеличения производительности печи.
4. Общий расход тепла W с увеличением нагрева дутья уменьшается, а так как величина W входит в знаменатель уравнения, то с ее уменьшением экономия тепла возрастает. Это единственная величина, способствующая возрастанию экономии тепла при увеличении нагрева дутья, однако ее влияние на общее изменение значения невелико по сравнению с влиянием трех предыдущих факторов.
Повышение температуры дутья на каждые 10 ºС в интервале от 1000 до 1300 ºС обеспечивает повышение производительности на 0,2-0,3% и снижение расхода кокса на 0,2-0,3%.
Современные доменные печи работают на дутье с температурой до 1250ºС. Дальнейшее повышение температуры дутья сдерживается возможностями воздухонагревателей и несовершенством конструкции фурменных приборов.
Увлажнение дутья
Естественная влага, содержащаяся в дутье, при высокой температуре в зоне горения диссоциирует на водород и кислород с поглощением большого количества тепла
Кислород влаги, так же как и кислород дутья, взаимодействует с углеродом кокса с СО
C + ½О2 ®СО+ 28080 ккал. (99)
Суммируя реакции получим
Переходящие в газовую фазу продукты реакции водород и оксид углерода принимают затем участие в НВ.
Естественная влажность воздуха колеблется в значительных пределах как и течение суток, так и по временам года на 8–12 г в 1 м 3 воздуха, или на 1–1,5% по объему.
Колебания влажности дутья вызывают изменения в тепловом и температурном режиме горна и в ходе восстановления, что приводит к расстройствам хода печи, ухудшая технико-экономические показатели.
Устранить колебания естественной влажности можно двумя путями: осушением дутья и увлажнением дутья в таких пределах, чтобы влажность его была несколько выше естественной, но постоянной во времени. Второй путь является более простым и менее затратным, и применяется овсеместно.
Для обеспечения стабильной влажности дутья применяют его увлажнение путем добавления в дутье водяного пара. После стабилизации влажности дутья получили увеличение производительности на 10–16% и снижение расхода кокса на 3,5–5,8% при одновременном повышении температуры дутья на 200–250 град и количества дутья на 5–7%.
При увлажнении дутья повышение производительности печи достигается за счет более ровного хода печи, обогащения дутья кислородом влаги, снижения расхода кокса и некоторого увеличения количества дутья.
Снижение расхода кокса достигается вследствие повышения восстановительной способности газа. Образующиеся при разложении влаги восстановительные газы Н2 и СО увеличивают НВ в зоне умеренных температур, уменьшая ПВ, которое протекает с поглощением тепла. Однако снижение расхода кокса может быть получено только при условии компенсации затрат тепла на разложение влаги и нагрев образовавшихся продуктов разложения влаги до температуры в зоне горения из расчета 72 град на 1% влаги в дутье, или 9 град на 1 г Н2О в 1 м 3 дутья.
Но достоинства увлажненного дутья не исчерпываются его интенсифицирующим действием. Увлажненное дутье позволяет быстро и эффективно влиять на тепловое состояние печи, являясь мощным фактором регулирования доменного процесса «снизу». При возникновении горячего хода его быстро устраняют увеличением содержания влаги в дутье. При похолодании нормальный нагрев восстанавливают уменьшением содержания влаги в дутье.
При выборе влажности дутья следует учитывать, что ее увеличение без компенсации затрат тепла на разложение влаги, ведет к ухудшению ТЭП доменной плавки (см. таблицу 2).
Обогащение дутья кислородом
При обогащении дутья кислородом изменяются следующие параметры (рисунок 36):
Читайте также Металлургическая теплотехника ->
1. Уменьшается расход дутья на единицу сжигаемого у фурм углерода, так как при повышении содержания кислорода в дутье соответственно уменьшается содержание азота.
2. Уменьшается количество горнового газа на единицу сжигаемого у фурм углерода вследствие уменьшения содержания азота в дутье.
3. Повышается концентрация СО в горновом газе вследствие уменьшения разбавления его азотом.
4. Значительно возрастает температура в зоне горения, так как уменьшается объем образующихся газов.
Рисунок 36 — Изменение некоторых параметров процесса при обогащении дутья кислородом
Перечисленные изменения параметров горения углерода у фурм при обогащении дутья кислородом вызывают как положительные, так и отрицательные изменения в ходе доменного процесса и его тепловом балансе.
- При обогащении дутья кислородом снижается перепад давления газов между горном и колошником вследствие уменьшения выхода горнового газа на единицу сжигаемого углерода и скорости движения газов в столбе шихтовых материалов. Это позволяет увеличить расход дутья в единицу времени, т. е. увеличить количество сжигаемого в единицу времени кокса и соответственно повысить производительность печи.
- При этом резко повышается температура фурменных газов, увеличивается их объем, что может стать причиной «нижних» подвисаний, то есть прекращения схода шихты в фурменные очаги из-за уровновешивания шихты подъемной силой газа. Поэтому повышение концентрации кислорода в дутье можно вести до температуры в фурменном очаге не выше 2200-2400°С. Дальнейшее обогащение дутья кислородом должно сопровождаться мерами по снижению температуры горения: увлажнение дутья или применение природного газа.
- Повышение концентрации окиси углерода в газе увеличивает непрямое восстановление, соответственно уменьшая расход тепла на ПВ при условии, если будет обеспечено достаточное количество газов и их рациональное распределение.
- Уменьшение количества горнового газа и повышение его температуры изменяют условия теплообмена так, что тепло от газов к шихте очень интенсивно передается в нижней части печи. В верхние зоны печи газ приходит с более низкой температурой, чем при обычном дутье.
- Меньшее количество колошникового газа и более низкая его температура уменьшают количество уносимого с газом из печи тепла, способствуя экономии кокса. Наконец, увеличение производительности печи при обогащении дутья кислородом уменьшает потери тепла в расчете на единицу чугуна.
Наибольший эффект от кислородного дутья там, где выше развита степень прямого восстановления, ниже температура дутья и выше температура колошника, т.е. при выплавке доменных ферросплавов.
Уменьшение количества и понижение температуры колошникового газа, а также уменьшение потерь тепла с охлаждающей водой и в атмосферу в расчете на единицу сплава вследствие повышения производительности дают значительную экономию кокса.
Так, обогащение дутья кислородом на каждый 1% в диапазоне от 25 до 30% позволяет повысит производительность на 1,6-2,4%. Наилучшие результаты от применения кислорода достигаются при одновременном использовании природного газа.
2.5 Методы интенсификации доменного процесса
Под интенсификацией доменного процесса понимают увеличение скорости его протекания. Мерой интенсивности хода доменной печи является количество чугуна, получаемое в единицу времени в расчете на единицу полезного объема доменной печи. В условиях производства принято пользоваться обратной величиной – полезным объемом печи, затрачиваемым в течении суток на выплавку 1 т чугуна. Этот показатель называется коэффициентом использования полезного объема доменной печи и определяется как частное от деления полезного объема печи Vпол (м3) на суточную производительность печи Т (т) чугуна/сутки. Чем меньше этот показатель, по абсолютному значению, тем интенсивнее протекает процесс, интенсивнее ход доменной печи.
Увеличить интенсивность хода доменной печи можно двумя путями:
создание условий, при которых в горн доменной печи в единицу времени можно подать большее количество дутья, расходуемого на сгорание углерода горючего;
создание условий, обеспечивающих снижение расхода кокса на единицу выплавляемого чугуна, если количество дутья, поступающее в горн в единицу времени, не снижается или снижается в меньшей мере, чем расход кокса.
При увеличении количества дутья, подаваемого в горн в единицу времени, соответственно увеличивается сгорающее в единицу времени количество углерода, а следовательно, увеличивается и производительность печи. При уменьшении относительного расхода горючего и неизменном количестве дутья производительность печи также возрастает вследствие увеличения рудной нагрузки на кокс. Наиболее высокая степень интенсификации процесса достигается, когда одновременно с увеличением количества дутья имеется возможность уменьшить и относительный расход горючего.
Увеличение интенсивности хода доменной печи путем увеличения расхода дутья в единицу времени предполагает улучшение газодинамики процесса. Это может быть достигнуто повышением прочности агломерата, отсевом мелких фракций и улучшением однородности гранулометрического состава шихтовых материалов, повышением давления газов в рабочем пространстве печи, снижением относительного выхода шлака и улучшением его физических свойств.
Увеличение интенсивности хода доменной печи путем снижения относительного расхода кокса предполагает уменьшение тепловых затрат на процесс и применение заменителей кокса в роли теплоносителя и восстановителя.
Основными методами интенсификации доменного процесса являются:
совершенствование способов подготовки и улучшение качества сырых материалов;
высокотемпературный нагрев дутья;
обогащение дутья кислородом;
вдувание в горн углеводород содержащих добавок;
повышение давления газов в рабочем пространстве доменной печи.
Наиболее важной по своему значению является подготовка сырья к плавке. Ни один из методов интенсификации доменного процесса, перечисленных в п. 2 – 7, не может дать максимального эффекта при плохом качестве сырья.
Впервые нагретое дутье в доменном производстве применили в 1829 г. Несмотря на сравнительно невысокий нагрев дутья (150 С), показатели работы печи значительно улучшились: относительный расход горючего уменьшился на 30 %, производительность печи возросла, появилась возможность увеличить количество дутья. При этом расход горючего на нагрев дутья был намного ниже полученной экономии. Впоследствии применение более нагретого дутья (350 – 400 С) на коксовых доменных печах позволило уменьшить относительный расход кокса на 25 – 35 %. В настоящее время дутье нагревают до1100 – 1200 0 С и выше.
За всю историю существования доменного производства ни одно мероприятие не дало такого снижения расхода горючего, как применение нагретого дутья.
Естественная влажность воздуха колеблется в значительных пределах как в течении суток, так и по временам года. Колебания влажности дутья вызывают изменения в тепловом и температурном режиме горна и в ходе восстановления, что нередко приводит к расстройствам хода печи, ухудшая технико-экономические показатели.
Читайте также 1.7 Основные физико-химические процессы доменной плавки.
Устранить колебания естественной влажности можно двумя способами: осушением дутья и увлажнением дутья в таких пределах, чтобы влажность его была несколько выше естественной, но постоянной во времени.
Обогащение дутья кислородом
При обогащении дутья кислородом изменяются следующие показатели:
Уменьшается расход дутья на единицу сжигаемого у фурм углерода.
Уменьшается количество горнового газа на единицу сжигаемого у фурм углерода.
Повышается концентрация оксида углерода в горновом газе.
Значительно возрастает температура в зоне горения.
При обогащении дутья кислородом снижается перепад давления газов между горном и колошником вследствие уменьшения выхода горнового газа на единицу сжигаемого углерода и скорости движения газов в столбе шихтовых материалов.
Вдувание в горн природного газа и других добавок к дутью
При вдувании природного газа в количестве 70 – 90 м3 на 1 т чугуна расход кокса уменьшается на 10 – 14 %. Экономия кокса при вдувании природного газа достигается за счет:
Увеличения непрямого и уменьшения прямого восстановления.
Замены части углерода кокса углерода природного газа.
Уменьшения прихода серы в печь, основности и выхода шлака вследствие уменьшения расхода кокса, вызываемого первыми двумя факторами.
Комбинированное дутье. Комбинированным принято называть дутье, включающее добавки как в виде окислителей (кислород, пар), так и восстановителей (природный газ, коксовый газ, мазут пылеугольное топливо и др.). Наибольшее распространение получило сочетание обогащения дутья кислородом с вдуванием природного газа.
Основной положительный эффект при вдувании природного газа состоит в значительном сокращении расхода кокса, а при обогащении дутья кислородом – в увеличении производительности печи. Но достижение возможного эффекта при вдувании природного газа ограничивается его отрицательными сторонами – увеличением количества горнового газа с понижением температуры в горне, а достижение возможного эффекта обогащенного кислородом дутья ограничивается, наоборот, чрезмерным повышением температуры в горне.
Повышение давления газа. Идея работы доменной печи на повышенном давлении газов была выдвинута с целью улучшения восстановительной способности газов. Однако положительное действие повышенного давления проявляется не в улучшении восстановительной способности газов, а в улучшении газодинамического режима доменной печи, при котором возможно значительное повышение производительности и снижение расхода кокса. Повышение давления газа внутри доменной печи достигается путем пережима струи газа при помощи специального дроссельного устройства, установленного в газопроводе очищенного от пыли газа. Положительное действие повышенного давления газа заключается в том, что с увеличением давления уменьшается объем газа и его скорость, вследствие чего уменьшаются подъемная сила газа и перепад давления газа между горном и колошником. Это позволяет увеличивать массовое количество дутья, не превышая его критического объема.
Экономическая эффективность доменного процесса при изменении условий работы доменной печи , страница 3
Для того чтобы оценить интенсивность доменного процесса используют следующие показатели:
ü удельный расход кокса(размерность кг/т чугуна чем этот показатель меньше тем интенсивнее работает печь.
ü удельная производительность доменной печи Пут т/м 3 -сут –показывает, какое количество чугуна снимается с 1м 3 доменной печи. На интенсивно работают доменная печь 2,5-3,0 т/м 3 сут и 1,8-2,0 т/м 3 (минимум в сутки должна давать 2 своих объёма).
ü КИПО- коэффициент использования полезного объёма доменной печи — показывает, какой объем доменной печи используется для выплавки тонны чугуна. Чем значение КИПО меньше, тем лучше работает доменная печь. На интенсивно работающих доменных печах КИПО находится в пределах 0,33-0,35 м 3 *сут/т.
Интенсификация доменного процесса- это ускорение или увеличение скорости протекания процесса с целью повышения производительности доменной печи.
Повысить интенсивность хода доменной печи можно двумя способами:
ü создать условия, при которых в горн можно подать больше количества дутья для сжигания кокса.
ü создать условия, обеспечивающие снижение расхода кокса на единицу выплавляемого чугуна.
При условии сохранении tрежима интенсификация будет более эффективной, если мы сможем выполнить сразу два условия.
При увеличении количества вдуваемого дутья необходимо обеспечить повышенную газопроницаемость шихтовых материалов, чтобы они смогли пропустить через себя больше газа.
Для уменьшения расхода кокса необходимо применения заменителей кокса и уменьшать тепловые затраты на процесс.
1.2 Способы интенсификации доменного процесса
`Основные методы интенсификации доменного процесса:
ü повышение качества шихтовых материалов;
ü повышение давления газов в рабочем пространстве печи;
ü подача высокотемпературного дутья (1100 – 1300 0 С).
Способы интенсификации доменного процесса
Применение офлюсованного агломерата высокой основности позволяет частично или полностью удалить известняк из шихты. Для полного исключения известняка из шихты (необходим агломерат с основностью 1,4—2,0. С выводом сырого известняка из доменной шихты уменьшается расход тепла на разложение CaCO3 и на взаимодействие выделившейся CO2 с углеродом кокса. При этом следует ожидать повышения восстановительной способности газов, так как со снижением расхода известняка уменьшается содержание CO2 в доменном газе. Использование офлюсованного агломерата способствует также более равномерному протеканию процесса шлакообразования, оказывает положительное влияние на ход печи и десульфурацию чугуна. Все это приводит к снижению расхода кокса и повышению производительности печи.
В результате применения офлюсованного агломерата с основностью 1,3—1,4 на передовых заводах расход известняка снизился с 322 до 70 кг/г чугуна, расход кокса — на 11,1%, а производительность повысилась на 12,2%.
Применение повышенного давления на колошнике. В настоящее время большинство доменных печей России работает с повышенным (до 0,6—0,8 и реже до 1,0—1,8 ати) давлением газа на колошнике. Обычное давление составляет 0,06—0,13 ати. Повышение давления газа сопровождается уменьшением объема поднимающихся из печи газов и снижением их скорости. Это приводит к более ровному ходу печи. Большее время пребывания газа в печи способствует лучшему использованию химической энергии газа и при рациональной загрузке шихтовых материалов достигается лучшее распределение газового потока по сечению печи. Повышенное давление газа на колошнике дает возможность форсировать ход печи, увеличивая количество дутья.
При работе на повышенном давлении газа возможна выплавка малокремнистого передельного чугуна без снижения нагрева дутья. Эта связано с зависимостью процесса восстановления углеродом от давления газа.
Похожие записи:
- Общие сведения о технологическом процессе производства чугуна в доменном цеху
- Показатели, характеризующие процессы восстановления в доменных печах
- Доменная печь: как появилась, схема, конструкция и компоненты, как работает
- Железные руды — виды, месторождения. Доменный процесс
Измерение и оценка уровня качества чугуна литейного
Методы интенсификации доменного процесса. Образование чугуна и шлака. Сырые материалы и подготовка их к доменной плавке. Физико-химические основы восстановительных процессов. Дифференциальный и комплексный методы оценки уровня качества чугуна литейного.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.02.2017 |
Размер файла | 584,9 K |
- посмотреть текст работы
- скачать работу можно здесь
- полная информация о работе
- весь список подобных работ
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
В данной курсовой работе будет рассмотрена проблема измерения и оценки уровня качества чугуна литейного. Чугун — дешевый машиностроительный материал, обладающий хорошими литейными качествами. Он является сырьем для выплавки стали. Получают чугун из железной руды с помощь топлива и флюсов. Получение чугуна — сложный химический процесс. Он состоит из трех стадии: восстановления железа из окислов, превращения железа в чугун и шлакообразования. Подробно этот процесс рассматривается в курсе химии. Свойства чугуна зависят главным образом от содержания в нем углерода и других примесей, неизбежно входящих в его состав: кремния (до 4,3%), марганца (до 2%), серы (до 0,07%) и фосфора (до 1,2%). Углерод — один из главных элементов в чугуне. В зависимости от количества и состояния входящего в сплав углерода получаются те или иные сорта чугуна. С железом углерод соединяется двояко: в жидком чугуне углерод находится в растворенном состоянии, а в твердом — в химически связанном с железом или в виде механической примеси в форме мелких пластинок графита. Кремний — важнейший после углерода элемент в чугуне, он увеличивает его жидкотекучесть, улучшает литейные свойства и делает чугун более мягким. Марганец повышает прочность чугуна. Сера в чугуне — вредная примесь, вызывающая красноломкость (образование трещин в горячих отливках). Она ухудшает жидкотекучесть чугуна, делая его густым, вследствие чего он плохо заполняет форму. Фосфор понижает механические свойства чугуна и вызывает хладноломкость (образование трещин в холодных отливках). В зависимости от состояния, в котором углерод находится в чугуне, чугун подразделяется на белый (углерод в химическом соединении с железом в виде цементита FeC) и серый (свободный углерод в виде графита). Белый чугун очень твердый и хрупкий, плохо поддается отливке, трудно обрабатывается режущим инструментом.
Он обычно идет на переплавку в сталь или на получение ковкого чугуна и поэтому называется передельным. Серый чугун наиболее широко применяется в машиностроении. Он мало пластичен и вязок, но легко обрабатывается резанием, применяется для малоответственных деталей и деталей, работающих на износ. Серый чугун с высоким содержанием фосфора (0,3—1,2%) жидкотекуч и используется для художественного литья. Серый чугун маркируется буквами и двумя числами, например СЧ 120-280. Буквы СЧ обозначают серый чугун, первое число — предел прочности (в МПа) при испытании на разрыв, а второе число — предел прочности (также в МПа) при испытании на изгиб. В зависимости от химического состава и назначения чугуны подразделяют на легированные, специальные, или ферросплавы, ковкие и высокопрочные чугуны. И так как современная промышленность не может существовать без литейного чугуна, в настоящее время данная проблема очень актуальна.
1. Описание объекта исследования и технологического процесса его производства
1.1 Описание объекта исследования
Чугун — сплав железа с углеродом (более 2 %), разделяют на нелегированный и легированный, содержащий хром, никель, марганец и другие легирующие элементы. По структуре различают белый чугун (с белым изломом), в котором углерод находится в виде цементита, и серый чугун (с серым изломом), в котором углерод находится в основном в форме графита. Серый чугун подразделяют на чугун литейный, высокопрочный, ковкий, жаростойкий, жаропрочный, коррозионностойкий и антифрикционный. В зависимости от массовой доли кремния и назначения чугун изготовляют: литейный марок Л1, Л2, Л3, Л4, Л5, Л6 и литейный рафинированный магнием марок ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7. Обозначение марок различных групп чугуна: чугун передельный — П1, П2; передельный чугун для отливок — ПЛ1, ПЛ2, передельный фосфористый чугун — ПФ1, ПФ2, ПФ3, передельный высококачественный чугун ПВК1, ПВК2, ПВК3 чугун с пластинчатым графитом СЧ; цифры стоящие после букв «СЧ», обозначают величину временного сопротивлению разрыву в кгс/мм; антифрикционный чугун АЧС — антифрикционный серый, АЧВ — антифрикционный высокопрочный, АЧК — антифрикционный ковкий; чугун с шаровидным графитом для отливок ВЧ; цифры после букв «ВЧ» означают временное сопротивление разрыву в кгс/мм ; чугун легированный со специальными свойствами Ч; буквы после буквы «Ч» означают легирующие элементы: Х — хром, С — кремний, Г — марганец, Н — никель, Д — медь, М — молибден, Т — титан, П — фосфор, Ю — алюминий. Цифры после букв означают среднее содержание основных легирующих элементов в процентах. Буква «Ш» в конце марки чугуна указывает, что чугун имеет графит шаровидной формы. ковкий чугун КЧ ; цифры, стоящие после букв «КЧ», означают временное сопротивление разрыву в кгс/мм и относительное удлинение в процентах. Чугун передельный предназначен для дальнейшего передела в сталь или переплавки в чугунолитейных цехах при производстве отливок. В зависимости от массовой доли кремния и назначения изготовляется: передельный чугун для сталеплавильного производства (П1 и П2); передельный чугун для литейного производства (ПЛ1 и ПЛ2); передельный фосфористый чугун (ПФ1, ПФ2, ПФ3); передельный высококачественный чугун (ПВК1, ПВК2, ПВК3). Чугун передельный изготовляется в чушках без пережимов, с одним или двумя пережимами. Толщина чушки в месте пережима должна быть не более 50 мм. Масса чушки должна быть не более 18, 30, 45, 55 кг. Количество боя чушек чугуна должно быть не более 2% массы партии. К бою относятся куски не более 2 кг. В низкокремнистом передельном чугуне марок П2, ПФ3 и ПВК3, а также в чугуне марок ПЛ1 и ПЛ2 в малых чушках количество боя должно быть не более 4% массы партии.
доменный плавка чугун шлак
1.2 Описание технологического процесса производства
1.2.1 Сырые материалы и подготовка их к доменной плавке
Топливо доменной плавки. В качестве топлива в современной доменной плавке применяют кокс, мазут, природный и коксовый газы и каменноугольную пыль. Основным видом топлива является кокс. Коксом называется пористое спекшееся вещество, остающееся после удаления из каменного угля летучих веществ при нагревании его до 950-1200° С без доступа воздуха. Это единственный материал, который сохраняет форму куска в доменной печи на всем пути движения от колошника к горну. Благодаря этому обстоятельству обеспечивается прохождение газового потока через слой жидких, полужидких и твердых материалов в доменной печи. В нижней части печи раскаленный кокс образует своеобразную дренажную решетку, через которую в горн стекают жидкие продукты плавки.
Высота столба шихты в современной доменной печи достигает 30 м, поэтому кокс, особенно в нижней части печи, воспринимает большие нагрузки. Отсюда вытекает основное требование, предъявляемое к коксу: высокая механическая прочность как в холодном, так и в нагретом состоянии. Загружаемый в доменную печь кокс не должен содержать ни мелких кусков, ухудшающих газопроницаемость шихты, ни чрезмерно крупных кусков, которые, как правило, поражены трещинами и легко разрушаются в печи с образованием мелких фракций. Кокс должен быть пористым для обеспечения хорошей горючести в горне печи и обладать высокой теплотой сгорания для получения требуемого количества тепла и необходимой температуры. Теплота сгорания кокса зависит от содержания в нем углерода, которое определяется содержанием золы, вредных примесей и летучих веществ в коксе. Чем выше содержание золы, вредных примесей и летучих веществ в коксе, тем меньше в нем углерода и меньше теплота его сгорания. Кроме того, с увеличением содержания золы и серы в коксе возрастают количество шлака, расход тепла на его расплавление и снижается механическая прочность кокса, а с увеличением содержания серы и фосфора в коксе ухудшается качество чугуна. Повышенное содержание летучих веществ в коксе свидетельствует о незавершенности процесса коксования, что приводит к снижению механической прочности кокса. Чрезмерно низкое содержание летучих в коксе, получающееся при пережоге кокса, также отрицательно сказывается на его качестве. Поэтому кокс должен содержать по возможности меньше золы, серы, фосфора и умеренное количество летучих веществ. В коксе всегда содержится влага, поступающая в кокс при его тушении на коксохимическом заводе или из атмосферы. В связи с тем, что кокс в доменной печи загружают по массе, содержание влаги в коксе должно выдерживаться постоянным для сохранения заданного теплового режима печи.
Руды и флюсы доменной плавки. Среди металлов железо занимает третье место по распространенности в земной коре (4,2 %) после кремния (26 %) и алюминия (7,4 %). Железо в недрах земли в чистом виде не встречается. Оно входит в состав горных пород в различных химических соединениях. В природе известно более 300 разновидностей горных пород, содержащих железо, но далеко не все они представляют собой железные руды. Железными рудами принято называть такие горные породы, из которых экономически выгодно извлекать железо методом плавки. Экономическая целесообразность извлечения железа из руд зависит от уровня развития техники и характеристики месторождений. Среди известных видов руд наиболее распространены в природе руды осадочного происхождения. Из этих руд выплавляется более 90 % чугуна. Железная руда состоит из минерала (орудняющего вещества), пустой породы и примесей. Главной частью руды является рудный минерал, в состав которого входит железо. Чаще всего железо в минерале химически связано с кислородом, реже с другими элементами и соединениями. Пустая порода состоит из кремнезема, глинозема, извести и магнезии, образующих сложные минералы. Примеси руд делятся на полезные и вредные. Полезными примесями считаются марганец, хром, никель, ванадий, вольфрам, молибден и др. Вредные примеси — сера, фосфор, мышьяк, цинк, свинец и в большинстве случаев медь — либо ухудшают качество металла, либо разрушающе действуют на огнеупорную футировку доменной печи. В зависимости от типа рудного минерала железные руды делятся на четыреосновные группы:
1. Красный железняк или гематитовая руда. Минерал гематит — безводный оксид железа, в чистом виде содержит 70 % железа и 30 % кислорода. Это наиболее распространенная железная руда.
2. Магнитный железняк или магнетитовая руда. Минерал — магнетит (72,4 % железа и 27,6 % кислорода).
3. Бурый железняк представлен железосодержащими минералами водных оксидов железа, которые содержат от 59,8 % до 69 % железа.
4. Шпатовый железняк — железная руда, основу которой составляет минерал сидерит, содержащий 48,3 % железа.
Кроме перечисленных четырех разновидностей железных руд, железо в значительном количестве (46,6 %) содержится в серном колчедане или пирите. Однако пирит в доменную плавку не дают, его используют в качестве сырья в сернокислотной промышленности, а отходы в виде окисленного железа применяют при производстве агломерата. Также находят промышленное применение бедные железные руды: магнетитовые и гематитовые кварциты, в которых содержится до 45 % кремнезема в виде свободного кварца. Кварциты обогащают, получая железнорудный концентрат, содержащий более 60 % железа. Критерием оценки железных руд являются:
1. Содержание железа.
2. Тип основного железосодержащего минерала.
3. Состав и свойства пустой породы.
4. Содержание вредных примесей.
5. Стабильность химического состава.
В настоящее время более 90 % добываемых руд перед загрузкой в доменные печи подвергают специальной подготовке, в процессе которой перечисленные выше характеристики руд значительно изменяются, однако многие из них сильно влияют на качество и свойства конечного продукта. При оценке железной руды прежде всего обращают внимание на содержание в ней железа, которое колеблется в очень широких пределах. Чем выше содержание железа в железной руде, тем экономичнее и производительнее работает доменная печь. К богатым рудам относят руды, содержащие железа 60-68 %, к средним 50-60 % и к бедным 40-50 %. Куксовые руды с высоким содержанием железа могут перерабатываться в доменной печи без предварительной подготовки, но таких руд мало, и они в основном используются при выплавке стали. Используются также и руды с содержанием железа менее 40 %. Эти руды подвергают обогащению. Нижний предел содержания железа в рудах определяется выгодностью их использования. Флюсами называются материалы, добавляемые к железной руде и загружаемые в доменную печь для понижения температуры плавления пустой породы, ошлакования золы кокса и получения жидкоподвижного шлака с высокой серопоглатительной способностью. В качестве флюса выбирают материал с химическими свойствами, противоположными химическим свойствам пустой породы. Так как пустая порода руд преимущественно кремнеземистая (кислая), то роль флюса выполняют основные оксиды CaO и частично MgO. Иногда в зависимости от состава пустой породы флюсы могут быть кислыми или глиноземистыми. Оксид кальция входит в состав минерала кальцита, называемого известняком. Кроме известняка, для руд с кислой пустой породой, в качестве флюса используют доломитизированный известняк, состоящий из смеси кальцита и доломита. Доломитизированный известняк применяют для улучшения подвижности шлака, доводя содержание оксида марганца в шлаке до 6-8 %. Важнейшим требованием, предъявляемым к основным флюсам, является низкое содержание в них кремнезема и глинозема, и вредных примесей серы и фосфора.
Подготовка руд к плавке. Необходимость подготовки руд к доменной плавке обуславливается стремлением улучшить технико-экономические показатели работы доменных печей и использовать для получения чугуна сравнительно бедные железные руды. Чем выше содержание железа в шихте и лучше ее газопроницаемость, тем выше производительность печи, ниже расход кокса и флюсов и лучше качество чугуна. Повышения содержания железа в доменной шихте достигают обогащением железных руд, а улучшения газопроницаемости шихты в доменной печи — окуксованием мелких железных руд и концентратов. Расчетами и опытом установлено, что при повышении содержания железа в руде на 1 % производительность печи возрастает на 2,0 — 2,5 %, а расход кокса снижается на 1,4 — 2 %.
Дробление. Руда может быть в виде кусков до 1500 мм при открытой добыче и до 300 мм при подземной добыче. Дробление руд применяется как самостоятельная операция для получения кусков руды требуемого размера и как вспомогательная операция при обогащении руд для разрушения механических связей между железосодержащим минералом и пустой породой. В зависимости от крупности руды после дробления различают четыре стадии дробления:
1. Крупное (размер кусков после дробления 100-300 мм).
2. Среднее (40-60 мм).
3. Мелкое (8-25 мм).
Процесс дробления характеризуется степенью и эффективностью дробления. Степень дробления определяют отношением максимальных размеров кусков до и после дробления: i = D/d, где i — степень дробления; D и d — максимальный размер кусков до и после дробления соответственно. Эффективность дробления определяют выходом дробленого материала на единицу израсходованной электроэнергии. Дробление — наиболее дорогая операция в системе подготовки руд. Мелкое и тонкое дробление называют измельчением и применяют только для руд, идущих на обогащение. Крупное, среднее и мелкое дробление осуществляют преимущественно в конусных дробилках.
Грохочение. Грохочением называется разделение руды на классы по крупности. Для руд, поступающих на металлургический завод без обогащения, грохочение является самостоятельной и очень важной операцией, в процессе которой выделяют мелкую руду (0-10 мм) для агломерации, а крупную (более 10 мм) сортируют на два класса: доменную (10-30 мм) и мартеновскую (30-80 мм). При обогащении руд на обогатительных фабриках грохочение является вспомогательной операцией, совмещаемой с дроблением руд. Это позволяет загружать в дробильные устройства только те фракции, которые подлежат дроблению, а, следовательно, уменьшить расход электроэнергии на дробление, повысить производительность дробильных устройств и качество дробления. Грохочение руд осуществляется на механических ситах.
Усреднение. Железные руды по условиям залегания и добычи всегда имеют непостоянный химический состав. Значительные и частые колебания содержания железа и пустой породы в рудах вызывают нарушение теплового состояния доменной печи и химического состава шлака. Это приводит к нарушению ровного хода печи, при котором неизбежны повышение расхода кокса, снижение производительности печи и ухудшение качества выплавляемого чугуна. Чтобы уменьшить отрицательное влияние непостоянства химического состава руд на показатели доменной плавки, руды подвергают усреднению. Усреднением называют перемешивание железорудных материалов с целью выравнивания химического и гранулометрического составов. В связи с тем, что почти все добываемые руды подвергают окуксованию, основное назначение усреднения состоит прежде всего в уменьшении колебаний содержания железа и кремнезема в рудах. Необходимо добиться такого усреднения руд, при котором колебания содержания железа и кремнезема в руде не превышали бы ±0,5 % от среднего значения.
Обогащение. Обогащением называется процесс разделения рудного минерала и пустой породы с целью повышения содержания металла в руде и уменьшения содержания пустой породы, а в некоторых случаях и вредных примесей. Все способы обогащения основаны на различии физических свойств рудных минералов и пустой породы. В результате обогащения руды получают:
1. концентрат — продукт, в котором содержится большая часть извлекаемогометалла;
2. хвосты — отходы при обогащении руды, в которых содержится незначительное количество металла;
3. промежуточный продукт, в котором содержание металла больше, чем в хвостах и меньше, чем в концентрате.
Промежуточный продукт подвергают повторному обогащению. В зависимости от метода обогащения и устройства аппарата степень извлечения железа при обогащении железных руд может изменяться от 60 до 95 %. Различают пять основных методов обогащения руд:
1. рудоотборка, основанная на различии цвета и блеска кусков рудного минерала и пустой породы;
2. промывка, основанная на разной размываемости кусков рудного минерала и пустой породы;
3. гравитационное обогащение — разделение в жидкой среде рудных минералов и пустой породы в зависимости от плотности зерен;
4. флотация — метод обогащения, основанный на различии физико-механических свойств поверхности частиц рудного минерала и пустой породы;
5. магнитная сепарация (самый распространенный метод обогащения), основанная на различии магнитных свойств минерала и пустой породы.
Окуксование руд. Окуксованием железных руд называются процессы превращения мелких руд и концентратов в кусковые материалы с целью улучшения хода металлургических процессов в печах различного типа для получения металлов из руд. Окуксование руд широко применяется в металлургии черных и цветных металлов. В металлургии черных металлов окуксованию подлежат все мелкие руды и концентраты, из которых получают металл в доменном, сталеплавильном и электрометаллургическом производствах. В доменном производстве окуксованием железорудного сырья достигают:
1. уменьшения выноса газовым потоком мелких фракций руды из доменной печи;
2. повышения газопроницаемости столба шихтовых материалов;
3. улучшения использования тепловой энергии и восстановительной способности газового потока;
4. улучшения протекания процессов восстановления, шлакообразования и перевода серы в шлак. В итоге окуксование сырья позволяет значительно увеличить производительность доменных печей, сократить расход кокса и повысить качество чугуна. Существует три метода окуксования руд и концентратов:
1. агломерация (процесс спекания мелких руд и концентратов путем сжигания топлива в слое спекаемого материала или подвода высокотемпературного тепла извне);
2. окатывание (процесс получения из концентрата сырых шаров диаметром 10 — 25 мм и последующего их обжига при температуре 1200 — 1350° С);
3. брикетирование (процесс прессования пылеватых руд и концентратов в куски одинаковой формы с добавкой или без добавки связующих веществ). В черной металлургии наибольшее распространение получила агломерация и окатывание руд.
1.2.2 Доменный процесс
Общая схема и сущность доменного процесса. Доменный процесс представляет собой совокупность механических, физических и физико-химических явлений, протекающих в работающей доменной печи (Рис.1).
Рисунок 1. Схема доменной печи шахтного типа
Загружаемые в доменную печь шихтовые материалы — кокс, железосодержащие компоненты и флюс — в результате протекания доменного процесса превращаются в чугун, шлак и доменный газ. В химическом отношении доменный процесс является восстановительно-окислительным: из оксидов восстанавливается железо, а окисляются восстановители. Однако доменный процесс принято называть восстановительным, так как цель его состоит в восстановлении оксидов железа до металла. Агрегатом для осуществления доменного процесса служит печь шахтного типа. Рабочее пространство доменной печи в горизонтальных сечениях имеет круглую форму, а в вертикальном разрезе — своеобразное очертание, называемое профилем. Важнейшим условием осуществления доменного процесса в рабочем пространстве печи является непрерывное встречное движение и взаимодействие опускающихся шихтовых материалов, загружаемых в печь через колошник, и восходящего потока газов, образующегося в горне при горении углерода кокса в нагретом до 1000 — 1200 °С воздухе (дутье), который нагнетается в верхнюю часть горна через расположенные по его окружности фурмы. К дутью может добавляться технический кислород, природный газ, водяной пар. Кокс поступает в горн нагретым до 1400 — 1500° С. В зонах горения углерод кокса взаимодействует с кислородом дутья. Образующийся в зонах горения диоксид углерода при высокой температуре и избытке углерода неустойчив и превращается в оксид углерода. Таким образом, за пределами зон горения горновой газ состоит только из оксида углерода, азота и небольшого количества водорода, образовавшегося при разложении водяных паров или природного газа. Смесь этих газов, нагретая до 1800 — 2000° С, поднимается вверх и передает тепло материалам, постепенно опускающимся в горн вследствие выгорания кокса, образования чугуна и шлака и периодического выпуска их из доменной печи. При этом газы охлаждаются до 200 — 450° С, а оксид углерода, отнимая кислород из оксидов железа, превращается частично в диоксид углерода, содержание которого в доменном газе на выходе из печи достигает 14 — 20 %. Шихтовые материалы загружают в доменную печь при помощи засыпного аппарата отдельными порциями — подачами. Они располагаются на колошнике чередующимися слоями кокса, руды или агломерата и флюса при работе на не полностью офлюсованном агломерате. Загрузку подач производят через 5 — 8 мин. по мере освобождения пространства на колошнике в результате опускания материалов. В процессе нагревания опускающихся материалов происходит удаление из них влаги и летучих веществ кокса и разложение карбонатов. Оксиды железа под действием восстановительных газов постепенно переходят от высших степеней окисления к низшим, а затем — в металлическое железо по схеме: Fe2O3 Fe3O4 FeO Fe. Свежевосстановленное железо заметно науглераживается еще в твердом состоянии. По мере науглераживания температура плавления его понижается. При температуре 1000 — 1100° С восстановление железа почти заканчивается и начинают восстанавливаться более трудновосстановимые элементы — кремний, марганец и фосфор. Науглероженное железо, содержащее около 4 % углерода и некоторое количество кремния, марганца и фосфора, плавится при температуре 1130 — 1150° С и стекает в виде капель чугуна в горн. В нижней половине шахты начинается образование жидкого шлака из составных частей пустой породы руды и флюса. Понижению температуры плавления шлака способствуют невосстановленные оксиды железа и марганца. В стекающем вниз шлаке под действием возрастающей температуры постепенно расплавляется вся пустая порода и флюс, а после сгорания кокса — и зола. При взаимодействии жидких продуктов плавки с раскаленным коксом в заплечиках и горне происходит усиленное восстановление кремния, марганца и фосфора из их оксидов, растворенных в шлаке. Здесь же поглощенная металлом в ходе плавки сера переходит в шлак. Железо и фосфор печи полностью восстанавливаются и переходят в чугун, а степень восстановления кремния и марганца и полотна удаления из чугуна серы в большой мере зависят от температурных условий, химического состава шлака и его количества. Жидкие чугун и шлак разделяются в горне благодаря различным удельным массам. По мере скопления их в горне чугун выпускают через чугунную летку, а шлак — через шлаковые летки (верхний шлак) и чугунную летку во время выпуска чугуна (нижний шлак). Все перечисленные процессы протекают в доменной печи одновременно, оказывая взаимное влияние.
Распределение и движение газов и шихты в доменной печи. Газовый поток. Высокопроизводительная и экономичная работа доменной печи в значительной мере зависит от того, как организовано движение и распределение газов и шихты в ее рабочем пространстве. Движение газов и распределение их в печи определяется множеством факторов, но главным из них являются гранулометрический состав шихты и ее распределение на колошнике во время загрузки и перераспределение при движении в доменной печи. В свою очередь и движущийся газовый поток влияет на распределение шихты. Газы в доменной печи движутся через столь шихты снизу-вверх под действием разности давлений, зависящей от величины сопротивления загруженной в печь шихты и количества воздуха, нагнетаемого в горн воздуходувной машиной. Проходя путь 24 — 26 м в течение нескольких секунд, газовый поток должен выполнить тепловую и восстановительную работу и обеспечить ровный сход шихтовых материалов от колошника к горну. Исходя из этих функций газового потока к распределению газов предъявляются противоречивые требования. Для наиболее полного использования тепла и восстановительной способности газового потока газы по сечению печи должны распределяться равномерно, иными словами, температура и состав газов во всех точках сечения доменной печи должны быть одинаковыми, а шихта — в равной мере, нагретой и восстановленной. Для обеспечения ровного схода шихты газовый поток по сечению печи должен распределяться неравномерно, проходя в большем количестве у стен и в осевой зоне печи, т. е. там, где чаще всего бывает меньше руды или агломерата. В действительности же в доменной печи невозможно достичь равномерного распределения газов по сечению вследствие специфических особенностей доменного процесса и конструкции доменной печи. Наиболее важным показателем, характеризующим распределение газового потока по сечению столба шихты, является сопоставление количеств газов, проходящих через равновеликие площади заполненного шихтой сечения печи в единицу времени.
Распределение материалов на колошнике при загрузке доменной печи. Исходя из требований, предъявляемых к распределению газов в доменной печи, материалы при загрузке должны распределяться неравномерно по сечению печи как по крупности, так и по компонентам шихты. У стен должно сосредотачиваться больше крупного агломерата с целью лучшего использования периферийных газов, а у оси — больше кокса. Большое количество мелких фракций железосодержащих компонентов у стен печи недопустимо во избежание тугого хода. Основную часть мелких фракций необходимо располагать в промежуточном кольце между периферией и центром. По окружности печи материалы должны, наоборот, распределяться строго равномерно, т. е. так, чтобы любая окружность горизонтального сечения была кривой равного содержания диоксида углерода в газе и кривой одинаковой температуры. Этим условиям распределения шихты удовлетворяет принятый способ загрузки материалов при помощи конуса и воронки. Шихтовые материалы — кокс, железосодержащие компоненты и флюс — загружают в доменную печь отдельными порциями, называемыми подачами. Количественное соотношение компонентов шихты в каждой подаче строго постоянное. Оно определяется расчетом шихты. Материалы на колошник подают специальными тележками — скипами, перемещающимися по рельсам наклонного моста. Объем материалов одной подачи соответствует объему нескольких скипов, поэтому подача на колошник подается по частям несколькими скипами. При этом одну часть скипов подачи загружают коксом, а другую — железосодержащими компонентами и флюсом. При полностью офлюсованном агломерате подача состоит только из скипов с агломератом и коксом.
Движение шихты в доменной печи. В доменной печи шихта опускается под действием своей массы в пространство, освобождающееся в результате уменьшения ее объема при протекании различных процессов, основными из которых являются горение углерода кокса в фурменных очагах, расход углерода кокса на прямое восстановление, образование и плавление чугуна и шлака, а также уплотнение шихты при движении. 44 — 52 % общего уменьшения объема шихты приходится на горение углерода, 11 — 16 % — на прямое восстановление, 25 — 35 % — на плавление чугуна и шлака и 5 — 15 % — на уплотнение материалов. Из этого следует, что уменьшение объема шихты происходит главным образом в очагах горения перед фурмами, а фурменные очаги можно уподобить своеобразным воронкам, через которые движется основная масса шихты. Периферийное расположение зон горения приводит к преимущественному движению шихты на периферии печи. Скорость движения шихты в периферийном кольце колошника составляет 90 — 140, а в центре 70 — 120 мм/мин. Длительность пребывания шихты в печи изменяется в пределах от 5,5 до 7 ч. Активизация работы центра печи всегда приводит к существенному увеличению скоростей опускания шихты в осевой зоне и уменьшению разности скоростей движения шихты на периферии и в центре.
Повышение скорости схода шихты на периферии колошника объясняется и другими причинами, главной из которых являются расширение шахты книзу и более интенсивное по сравнению с коксом движение железорудных компонентов, располагающихся в большом количестве на периферии. В результате неодинаковой скорости движения шихты в рабочем пространстве печи одновременно загруженные в печь материалы приходят в горн неодновременно. Это явление называется опережением, которое необходимо учитывать при изменении условий работы, печи, связанных с переходом на выплавку другого вида чугуна, изменением качества материалов.
1.2.3 Восстановление оксидов металлов
Физико-химические основы восстановительных процессов. Одним из условий получения чугуна в доменной печи является удаление кислорода из оксидов, металлы которых входят в состав чугуна. Процесс отнятия кислорода от оксида и получения из него элемента или оксида с меньшим содержанием кислорода называется восстановлением. Наряду с восстановлением протекает окисление вещества, к которому переходит кислород оксида. Это вещество называется восстановителем. Восстановительные процессы сопровождаются выделением или поглощением тепла. Химическая прочность оксида определяется силами химической связи данного элемента с кислородом.
Восстановление оксидов железа оксидом углерода. По степени убывания кислорода оксиды железа располагаются в ряд: Fe2O3, Fe3O4 и FeO, содержащие соответственно 30,06; 27,64 и 22,28 % кислорода. Из трех оксидов железа, взятых в свободном состоянии, наиболее прочным в условиях рабочего пространства доменной печи, а точнее при температуре выше 570° С, является FeO. Восстановление железа из его оксидов протекает ступенчато путем последовательного удаления кислорода и в зависимости от температуры может быть изображено двумя схемами: при температуре выше 570° С Fe2O3 Fe3O4 FeO F при температуре ниже 570° С Fe2O3 Fe3O4 Fe. Ниже 570° С прочность FeO становится меньше прочности Fe3O4, и она превращается в Fe3O4 и Fe. В доменной печи восстановление железа из его оксидов протекает в основном по первой схеме, так как уже через несколько минут после загрузки материалов на колошник они нагреваются до температуры выше 570° С. Большая половина кислорода, связанного в оксиды железа, отбирается оксидом углерода, поэтому основным восстановителем в доменной печи является оксид углерода. Восстановление оксидов железа оксидом углерода при температуре выше 570° С идет по реакциям:
1) 3Fe2O3 + СО 2Fe3O4 + СО2 + 37,137 МДж,
2) Fe2O3 + mCO « 3FeO + (m — 1)CO + СО2 — 20,892 МДж,
3) FeO + nCO « Fe + (n — 1)CO + СО2 + 13,607 МДж.
1.2.4 Образование чугуна и шлака
Науглераживание железа. Восстановленное в доменной печи из руды железо поглощает углерод и другие элементы, образуя чугун. Процесс науглераживания железа начинается с момента его появления в виде твердой губки в зоне умеренных температур. Механизм науглераживания железа сводится к следующему. Свежевосстановленное железо служит катализатором реакций разложения оксида углерода на сажистый углерод и диоксид углерода. Эта реакция протекает на поверхности губки. Обладая повышенной химической активностью, сажистый углерод взаимодействует с атомами железа и образует карбиды железа. Науглераживание губчатого железа уже заметно протекает при 400 — 500° С. По мере науглераживания железа температура плавления его понижается. Если чистое железо плавится при 1539° С, то сплав железа с углеродом, содержащий 4,3 % С, плавится при 1135° С. Однако науглераживание железа в твердом состоянии является лишь начальной стадией этого процесса, способствующей понижению температуры плавления металла. Более интенсивно науглераживание протекает после перехода металла в жидкое состояние. Капли металла, стекая в горн печи, контактируют на поверхности кусков раскаленного кокса с углеродом, в результате чего содержание углерода в сплаве резко возрастает. На горизонте фурм за пределами зон горения содержание углерода в чугуне достигает 3,8 — 4,0%. Окончательное науглераживание металла происходит в горне печи. Переход других элементов в чугун (марганца, кремния, фосфора и серы) осуществляется по мере их восстановления на различных горизонтах рабочего пространства печи. Марганец при выплавке передельного чугуна заметно переходит в металл уже в распаре, однако наиболее интенсивное насыщение чугуна марганцем происходит в заплечиках и горне при восстановлении марганца. Основная масса кремния переходит в чугун в нижней части заплечиков и в горне. Содержание фосфора в пробах металла из распара почти такое же, как и в конечном чугуне, а иногда и выше. Это объясняется тем, что в металл из распара, попадает не только фосфор, который восстановился здесь и выше, но и фосфор, возгоняющийся из нижних горизонтов печи. Фосфор начинает переходить в металл уже в нижней части шахты. Окончательное содержание углерода в чугуне не поддается регулированию и зависит от элементов в сплаве. Марганец и хром, являясь корбидообразующими элементами, способствуют увеличению содержания углерода в чугуне. Кремний и фосфор, образуя более прочные с железом соединения, разрушают карбиды железа и понижают содержание углерода в чугуне. Если в передельном маломарганцовистом чугуне содержится 4 — 4,6% углерода, то в зеркальном чугуне, содержащем 10 — 25 % марганца, углерода содержится 5 — 5,5 %, а в 75 %-ом ферромарганце содержание углерода достигает 7 — 7,5 %. Наоборот, в литейном чугуне, содержащем 2,5% кремния, содержание углерода не превышает 3,5 %, а в ферросилиции содержание углерода понижается до 2 % и ниже. Содержание марганца и кремния сильно влияет на структуру чугуна, что имеет очень важное значение при производстве литейного чугуна, используемого в машиностроении. Известно, что углерод в чугуне может находиться в химически связанном состоянии в виде карбида и в свободном состоянии в виде графита. В литейном чугуне благодаря повышенному содержанию кремния значительная часть углерода находится в виде графита, что способствует повышению прочности отливок. В изломе такой чугун имеет серый цвет. Увеличение содержания карбидов железа в чугуне повышает его хрупкость. В изломе такой чугун имеет белый цвет. Качество чугуна для отливок также зависит и от условий выплавки чугуна в доменной печи.
Образование шлака. В доменной печи шлак образуется под действием высоких температур в результате плавления пустой породы железосодержащих материалов и флюса, к которым в горне присоединяется зола сгоревшего кокса. Шлакообразующими оксидами являются SiO 2, CaO, MgO, Al2O3, FeO, MnO, а также сульфиды металлов, преобладающим из которых является CaS. Образованию шлака предшествуют процессы размягчения и спекания пустой породы и флюса, сопровождающиеся образованием твердых растворов и различных химических соединений. Эти процессы представляют собой промежуточное звено при переходе вещества из твердого состояния в жидкое. Чем больше температурный интервал, в котором протекает превращение шлакообразующих компонентов из твердого состояния в жидкое, тем большую часть по высоте печи занимает вязкая масса, заполняющая пустоты между кусками кокса и препятствующая движению и распределению газов. В связи с этим температурный интервал размягчения шлакообразующих компонентов должен быть по возможности меньшим. В процессе шлакообразования различают первичный, промежуточный и конечный шлаки. Первичный шлак появляется в начальной стадии шлакообразования в результате плавления легкоплавких соединений. Первичный шлак, перемещаясь в зоны с более высокими температурами, нагревается, а химический состав его непрерывно изменяется в следствии восстановления железа и марганца из соответствующих оксидов и растворения в шлаке новых количеств CaO и MgO, увеличивающих количество шлака. Конечный шлак образуется в горне после растворения в шлаке золы сгоревшего кокса и остатков извести и окончательного распределения серы между чугуном и шлаком. С применением офлюсованного агломерата условия шлакообразования изменяются. Присутствие извести в агломерате обеспечивает хороший контакт шлакообразующих оксидов, по этому их размягчение при нагреве и образование первичного шлака протекает в сравнительно не большой зоне по высоте печи, от чего значительно повышается газопроницаемость этой зоны. Восстановление железа из офлюсованного агломерата протекает интенсивнее и равномернее по сечению, вследствие чего в первичном шлакообразовании участвует меньшее количество FeO, а зона начала образования шлака смещается в область более высоких температур.
1.2.5 Методы интенсификации доменного процесса
Некоторые понятия об интенсификации. Под интенсификацией доменного процесса понимают увеличение скорости его протекания. Мерой интенсивности хода доменной печи является количество чугуна, получаемое в единицу времени в расчете на единицу полезного объема доменной печи. В условиях производства принято пользоваться обратной величиной — полезным объемом печи, затрачиваемым в течении суток на выплавку 1 т чугуна. Этот показатель называется коэффициентом использования полезного объема доменной печи и определяется как частное от деления полезного объема печи V пол (м3) на суточную производительность печи Т (т) чугуна/сут. Чем меньше этот показатель, по абсолютному значению, тем интенсивнее протекает процесс, интенсивнее ход доменной печи. Увеличить интенсивность хода доменной печи можно двумя путями:
1. создание условий, при которых в горн доменной печи в единицу времени можно подать большее количество дутья, расходуемого на сгорание углерода горючего;
2. создание условий, обеспечивающих снижение расхода кокса на единицу выплавляемого чугуна, если количество дутья, поступающее в горн в единицу времени, не снижается или снижается в меньшей мере, чем расход кокса.
При увеличении количества дутья, подаваемого в горн в единицу времени, соответственно увеличивается сгорающее в единицу времени количество углерода, а, следовательно, увеличивается и производительность печи. При уменьшении относительного расхода горючего и неизменном количестве дутья производительность печи также возрастает вследствие увеличения рудной нагрузки на кокс. Наиболее высокая степень интенсификации процесса достигается, когда одновременно с увеличением количества дутья имеется возможность уменьшить и относительный расход горючего. Увеличение интенсивности хода доменной печи путем увеличения расхода дутья в единицу времени предполагает улучшение газодинамики процесса. Это может быть достигнуто повышением прочности агломерата, отсевом мелких фракций и улучшением однородности гранулометрического состава шихтовых материалов, повышением давления газов в рабочем пространстве печи, снижением относительного выхода шлака и улучшением его физических свойств. Увеличение интенсивности хода доменной печи путем снижения относительного расхода кокса предполагает уменьшение тепловых затрат на процесс и применение заменителей кокса в роли теплоносителя и восстановителя. Основными методами интенсификации доменного процесса являются:
1. совершенствование способов подготовки и улучшение качества сырых материалов;
2. высокотемпературный нагрев дутья;
3. увлажнение дутья;
4. обогащение дутья кислородом;
5. вдувание в горн углеводородосодержащих добавок;
6. комбинирование дутья;
7. повышение давления газов в рабочем пространстве доменной печи.
Наиболее важной по своему значению является подготовка сырья к плавке. Ни один из методов интенсификации доменного процесса, перечисленных в п. 2 — 7, не может дать максимального эффекта при плохом качестве сырья.
Нагрев дутья. Впервые нагретое дутье в доменном производстве применили в 1829 г. Несмотря на сравнительно невысокий нагрев дутья (150° С), показатели работы печи значительно улучшились: относительный расход горючего уменьшился на 30 %, производительность печи возросла, появилась возможность увеличить количество дутья. При этом расход горючего на нагрев дутья был намного ниже полученной экономии. Впоследствии применение более нагретого дутья (350 — 400° С) на коксовых доменных печах позволило уменьшить относительный расход кокса на 25 — 35 %. В настоящее время дутье нагревают до 1100 — 1200° С и выше. За всю историю существования доменного производства ни одно мероприятие не дало такого снижения расхода горючего, как применение нагретого дутья.
Увлажнение дутья. Естественная влажность воздуха колеблется в значительных пределах как в течении суток, так и по временам года. Колебания влажности дутья вызывают изменения в тепловом и температурном режиме горна и в ходе восстановления, что нередко приводит к расстройствам хода печи, ухудшая технико-экономические показатели. Устранить колебания естественной влажности можно двумя способами: осушением дутья и увлажнением дутья в таких пределах, чтобы влажность его была несколько выше естественной, но постоянной во времени.
Обогащение дутья кислородом. При обогащении дутья кислородом изменяются следующие показатели:
1. Уменьшается расход дутья на единицу сжигаемого у фурм углерода.
2. Уменьшается количество горнового газа на единицу сжигаемого у фурм углерода.
3. Повышается концентрация оксида углерода в горновом газе.
4. Значительно возрастает температура в зоне горения.
5. При обогащении дутья кислородом снижается перепад давления газов между горном и колошником вследствие уменьшения выхода горнового газа на единицу сжигаемого углерода и скорости движения газов в столбе шихтовых материалов.
Вдувание в горн природного газа и других добавок к дутью. При вдувании природного газа в количестве 70 — 90 м3 на 1 т чугуна расход кокса уменьшается на 10 — 14 %. Экономия кокса при вдувании природного газа достигается за счет:
1. Увеличения непрямого и уменьшения прямого восстановления.
2. Замены части углерода кокса углерода природного газа.
3. Уменьшения прихода серы в печь, основности и выхода шлака вследствие уменьшения расхода кокса, вызываемого первыми двумя факторами. Комбинированное дутье. Комбинированным принято называть дутье, включающее добавки как в виде окислителей (кислород, пар), так и восстановителей (природный газ, коксовый газ, мазут пылеугольное топливо и др.). Наибольшее распространение получило сочетание обогащения дутья кислородом с вдуванием природного газа. Основной положительный эффект при вдувании природного газа состоит в значительном сокращении расхода кокса, а при обогащении дутья кислородом — в увеличении производительности печи. Но достижение возможного эффекта при вдувании природного газа ограничивается его отрицательными сторонами — увеличением количества горнового газа с понижением температуры в горне, а достижение возможного эффекта обогащенного кислородом дутья ограничивается, наоборот, чрезмерным повышением температуры в горне.
Повышение давления газа. Идея работы доменной печи на повышенном давлении газов была выдвинута с целью улучшения восстановительной способности газов. Однако положительное действие повышенного давления проявляется не в улучшении восстановительной способности газов, а в улучшении газодинамического режима доменной печи, при котором возможно значительное повышение производительности и снижение расхода кокса. Повышение давления газа внутри доменной печи достигается путем пережима струи газа при помощи специального дроссельного устройства, установленного в газопроводе очищенного от пыли газа. Положительное действие повышенного давления газа заключается в том, что с увеличением давления уменьшается объем газа и его скорость, вследствие чего уменьшаются подъемная сила газа и перепад давления газа между горном и колошником. Это позволяет увеличивать массовое количество дутья, не превышая его критического объема.
1.2.6 Продукты доменной плавки
Конечными продуктами доменной плавки являются чугун, шлак, колошниковый газ и колошниковая пыль. Чугун представляет собой многокомпонентный сплав железа с углеродом, марганцем, кремнием, фосфором и серой. В чугуне также содержится незначительные количества водорода, азота и кислорода. В легированном чугуне могут быть хром, никель, ванадий, вольфрам и титан, количество которых зависит от состава проплавляемых руд. В зависимости от назначения выплавляемые в доменных печах чугуны разделяют на три основных вида: передельный, идущий на передел в сталь; литейный, предназначенный для получения отливок из чугуна в машиностроении; доменные ферросплавы, используемые для раскисления стали в сталеплавильном производстве. Передельный чугун подразделяют на три вида:
1. Передельный коксовый (марки М1, М2, М3, Б1, Б2).
2. Передельный коксовый фосфористый (МФ1, МФ2, МФ3).
3. Передельный коксовый высококачественный (ПВК1, ПВК2, ПВК3). Литейный чугун после выпуска из доменной печи разливают в чушки и в холодном виде направляют на машиностроительные заводы, где для отливки деталей машин его вторично подвергают расплавлению в специальных печах-вагранках. Литейный коксовый чугун выплавляют семи марок: ЛК1 — ЛК7. Каждую марку подразделяют на три группы по содержанию марганца, пять классов по содержанию фосфора и на пять категорий по содержанию серы. Литейный чугун выплавляют шести марок: Л1 — Л6, а чугун литейный рафинированный магнием выплавляют семи марок: ЛР1 — ЛР7.
Размещено на http://www.allbest.ru/
Рисунок 2 — Технологическая схема производства чугуна
2. Нормативные документы на продукцию
ГОСТ 4832-95 «Чугун литейный. Технические условия». Разработан Техническим комитетом Украины № 4 «Чугун, прокат листовый, прокат сортовой термоупрачненный. Изделия для подвижного состава, метизы и ТНП»; Институтом черной металлургии НАН Украины. Внесен Государственным комитетом Украины по стандартизации, метрологии и сертификации (протокол № 8 от 10 октября 1995 г.). Утвержден и введен в действие Постановлением Государственного комитета Российской федерации по стандартизации и метрологии от 16 ноября 1998 г. № 398 межгосударственный стандарт ГОСТ 4832-95 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1999 г. Взамен ГОСТ 4832-80. Издание с Поправкой (ИУС 2-2000).
Структура данного стандарта представлена ниже:
1. Область применения.
2. Нормативные ссылки.
4. Технические требования.
5. Правила приемки.
6. Методы контроля.
7. Транспортирование и хранение.
8. Приложение А (рекомендуемое) Международный стандарт ИСО 914-87 «Чушковый чугун. Определение и классификация».
Настоящий стандарт распространяется на литейный чугун, предназначенный для дальнейшей переплавки в чугунолитейных цехах при производстве чугунных отливок.
ГОСТ 7565-81 «Чугун, сталь и сплавы». Утверждено и введено в действие Постановлением Комитета стандартизации и метрологии СССР от 17.06.91 № 879. Дата введения 01.01.92. Постановлением Государственного комитета СССР по стандартам от 30 декабря 1981 г. № 5786 срок введения установлен с 01.01.82. Проверен в 1986 г. Постановлением Госстандарта от 11.06.86 № 1451 срок действия продлен до 01.01.92 и действует по настоящее время. Изменение № 2 ГОСТ 7565-81 Чугун, сталь и сплавы. Метод отбора проб для определения химического состава.
Структура данного стандарта представлена ниже:
1. Отбор и подготовка проб чугуна.
2. Отбор и подготовка ковшевых проб стали и сплавов.
3. Отбор и подготовка проб для определения химического состава готового проката.
4. Схемы стаканчиков-изложниц для отбора проб.
5. Схемы отбора проб от заготовок, поковок и проката для химического анализа.
6. Схемы отбора проб от заготовок и готового проката для спектрального анализа.
7. Международный стандарт «Отбор и приготовление образцов и проб для испытаний кованой стали» ИСО 377.2-89.
Настоящий стандарт устанавливает метод отбора и подготовки проб для определения химического состава чугуна, стали, сплавов и готового проката. Стандарт полностью соответствует СТ СЭВ 466-77.
ГОСТ 22536.1-88 «Сталь углеродистая и чугун нелегированный. Методы определения общего углерода и графита». Разработан и внесен Министерством черной металлургии СССР. Исполнители: Д.К.Нестеров, канд. техн. наук; С.И.Рудюк, канд. техн. наук; С.В.Спирина, канд. хим. наук (руководитель темы); В.Ф.Коваленко, канд. техн. наук; Н.Н.Гриценко, канд. хим. наук; Л.И.Березовая. Утвержден и введен в действие Постановлением Государственного комитета СССР по стандартам от 25.08.88 № 3018. Стандарт соответствует СТ СЭВ 5284-85 в части стали углеродистой и чугуна нелигированного. Взамен ГОСТ 22536.1-77.
Подобные документы
Состав и классификация чугуна
Качественный и количественный состав чугуна. Схема доменного процесса как совокупности механических, физических и физико-химических явлений в работающей доменной печи. Продукты доменной плавки. Основные отличия чугуна от стали. Схемы микроструктур чугуна.
Черная металлургия: производство чугуна
Классификация сплавов черных металлов по свойствам. Содержание примесей в чугуне. Сырые материалы (шихта). Топливо и флюсы в металлургии чугуна, характеристика некоторых железных руд. Производство чугуна на АО «АрселорМиттал Темиртау». Качество чугуна.
Сварка чугуна
Виды и особенности сварки чугуна. Выбор электродов для сварки чугуна. Горячая сварка чугуна. Холодная сварка чугуна электродами из никелевых сплавов. Охрана труда при сварочных работах. Способы сварки чугуна. Мероприятия по защите окружающей среды.
Черная металлургия
Характеристика металлургической ценности руды. Обоснование технологической схемы подготовки руды к доменной плавке. Расчет массы и состава шлака, образующегося в доменной печи при выплавке чугуна. Определение состава и количества конвертерного шлака.
Химический состав шихтовых материалов доменной плавки
Расчет шихты доменной печи. Средневзвешенный состав рудной смеси. Выбор состава чугуна и шлака. Оценка физических и физико-химических свойств шлака. Заплечики и распар, шахта и колошник. Профиль и горн доменной печи, показатели, характеризующие ее работу.
- главная
- рубрики
- по алфавиту
- вернуться в начало страницы
- вернуться к началу текста
- вернуться к подобным работам
Чем можно повысить производительность доменной печи
Экономическая эффективность доменного процесса при изменении условий работы доменной печи , страница 3
Для того чтобы оценить интенсивность доменного процесса используют следующие показатели:
ü удельный расход кокса(размерность кг/т чугуна чем этот показатель меньше тем интенсивнее работает печь.
ü КИПО- коэффициент использования полезного объёма доменной печи — показывает, какой объем доменной печи используется для выплавки тонны чугуна. Чем значение КИПО меньше, тем лучше работает доменная печь. На интенсивно работающих доменных печах КИПО находится в пределах 0,33-0,35 м 3 *сут/т.
Интенсификация доменного процесса- это ускорение или увеличение скорости протекания процесса с целью повышения производительности доменной печи.
Повысить интенсивность хода доменной печи можно двумя способами:
ü создать условия, при которых в горн можно подать больше количества дутья для сжигания кокса.
ü создать условия, обеспечивающие снижение расхода кокса на единицу выплавляемого чугуна.
При условии сохранении tрежима интенсификация будет более эффективной, если мы сможем выполнить сразу два условия.
При увеличении количества вдуваемого дутья необходимо обеспечить повышенную газопроницаемость шихтовых материалов, чтобы они смогли пропустить через себя больше газа.
Для уменьшения расхода кокса необходимо применения заменителей кокса и уменьшать тепловые затраты на процесс.
1.2 Способы интенсификации доменного процесса
`Основные методы интенсификации доменного процесса:
ü повышение качества шихтовых материалов;
ü повышение давления газов в рабочем пространстве печи;
ü подача высокотемпературного дутья (1100 – 1300 0 С).
Способы интенсификации доменного процесса
Применение офлюсованного агломерата высокой основности позволяет частично или полностью удалить известняк из шихты. Для полного исключения известняка из шихты (необходим агломерат с основностью 1,4—2,0. С выводом сырого известняка из доменной шихты уменьшается расход тепла на разложение CaCO3 и на взаимодействие выделившейся CO2 с углеродом кокса. При этом следует ожидать повышения восстановительной способности газов, так как со снижением расхода известняка уменьшается содержание CO2 в доменном газе. Использование офлюсованного агломерата способствует также более равномерному протеканию процесса шлакообразования, оказывает положительное влияние на ход печи и десульфурацию чугуна. Все это приводит к снижению расхода кокса и повышению производительности печи.
В результате применения офлюсованного агломерата с основностью 1,3—1,4 на передовых заводах расход известняка снизился с 322 до 70 кг/г чугуна, расход кокса — на 11,1%, а производительность повысилась на 12,2%.
Применение повышенного давления на колошнике. В настоящее время большинство доменных печей России работает с повышенным (до 0,6—0,8 и реже до 1,0—1,8 ати) давлением газа на колошнике. Обычное давление составляет 0,06—0,13 ати. Повышение давления газа сопровождается уменьшением объема поднимающихся из печи газов и снижением их скорости. Это приводит к более ровному ходу печи. Большее время пребывания газа в печи способствует лучшему использованию химической энергии газа и при рациональной загрузке шихтовых материалов достигается лучшее распределение газового потока по сечению печи. Повышенное давление газа на колошнике дает возможность форсировать ход печи, увеличивая количество дутья.
При работе на повышенном давлении газа возможна выплавка малокремнистого передельного чугуна без снижения нагрева дутья. Эта связано с зависимостью процесса восстановления углеродом от давления газа.
Методы интенсификации доменного процесса
Под интенсификацией доменного процесса понимают увеличение скорости его протекания. Мерой интенсивности хода доменной печи является количество чугуна, получаемое в единицу времени в расчете на единицу полезного объема доменной печи. Коэффициент использования полезного объема доменной печи к. и. п. о. определяется как частное от деления полезного объема печи Vпол (м 3 ) на суточную производительность печи Т (т) чугуна/сутки
Чем меньше этот показатель, тем интенсивнее протекает процесс, интенсивнее ход доменной печи.
Увеличить интенсивность хода доменной печи можно двумя путями: 1) созданием условий, при которых в горн доменной печи в единицу времени можно подать большее количество дутья (кислорода), расходуемое на горение углерода горючего, и 2) созданием условий, обеспечивающих снижение расхода кокса на единицу выплавляемого чугуна, если количество дутья, поступающее в горн в единицу времени не снижается или снижается в меньшей мере, чем расход кокса.
При увеличении количества дутья (кислорода), подаваемого в горн в единицу времени, соответственно увеличивается сгорающее в единицу времени количество углерода, а следовательно, увеличивается и производительность печи. При уменьшении относительного расхода горючего и неизменном количестве дутья производительность печи также возрастает вследствие увеличения рудной нагрузки на кокс.
Наиболее высокая степень интенсификации процесса достигается, когда одновременно с увеличением количества дутья имеется возможность уменьшить и относительный расход кокса в подачу.
Увеличение интенсивности хода доменной печи путем увеличения расхода дутья (кислорода) в единицу времени предполагает улучшение газопроницаемости столба шихты. Это может быть достигнуто повышением прочности агломерата, отсевом мелких фракций и улучшением однородности гранулометрического состава шихтовых материалов, повышением давления газов в рабочем пространстве печи, снижением относительного выхода шлака и улучшением его физических свойств. Данные по влиянию различных технологических факторов на технико-экономические показатели доменной плавки представлены в таблице 2.
Увеличение интенсивности хода доменной печи путем снижения относительного расхода кокса предполагает уменьшение тепловых затрат на процесс и применение заменителей кокса в роли теплоносителя и восстановителя. Уменьшение тепловых затрат на процесс достигается улучшением подготовки сырья. Глубокое обогащение, производство легковосстановимого офлюсованного и прочного агломерата позволяют вести процесс с низким выходом шлака, исключением затрат тепла на разложение сырого флюса, наиболее выгодным сочетанием прямого и непрямого восстановления и обеспечением равномерного нагрева. Применение высоконагретого дутья уменьшает расход углерода-теплоносителя, а вдувание в горн углеводородсодержащих добавок уменьшает расход углерода-восстановителя.
Основными методами интенсификации доменного процесса являются:
1) совершенствование способов подготовки и улучшение качества сырых материалов; 2) высокотемпературный нагрев дутья; 3) увлажнение дутья; 4) обогащение дутья кислородом; 5) вдувание в горн углеводородсодержащих добавок; 6) комбинирование дутья; 7) повышение давления газов в рабочем пространстве доменной печи.
Наиболее важной является подготовка сырья к плавке. Ни один из методов интенсификации доменного процесса не может дать максимального эффекта при плохом качестве сырья.
Таблица 2 – Влияние качества шихты и технологических факторов на производительность доменной печи и удельный расход кокса
Снижение расхода горючего при переходе от холодного дутья к нагретому или от менее нагретого дутья к более нагретому происходит в результате действия двух причин: 1) замены части тепла, выделяемого при сгорании углерода у фурм, теплом нагретого дутья и 2) изменений в доменном процессе, которые вызывают изменения в тепловом балансе плавки в сторону уменьшения расхода тепла. Количество тепла, вносимое нагретым дутьем на единицу выплавляемого чугуна, определяется уравнением
где Vд – объем дутья на единицу чугуна, м 3 ; сд – теплоемкость дутья, кдж/(м 3 ×град);
tд– температура дутья, °С.
Получаемая от нагрева дутья экономия тепла в виде горючего больше количества тепла, вносимого в печь нагретым дутьем, или, другими словами, тепло нагретого дутья заменяет такое количество горючего, которое при сгорании выделило бы большее количество тепла, чем вносится дутьем. Объясняется это тем, что тепло нагретого дутья не сопровождается образованием дополнительного количества газов, которые, уходя из доменной печи, уносили бы часть тепла. Следовательно, тепло нагретого дутья практически полностью используется в нижней части доменной печи и расходуется на прямое восстановление элементов, перевод серы в шлак и нагрев чугуна и шлака. Получаемое при сгорании у фурм углерода тепло в отличие от тепла нагретого дутья в доменной печи используется не полностью, так как часть его уносится из печи газами, образовавшимися при сгорании кокса, а часть теряется с охлаждающей водой и в атмосферу.
Изменения в тепловом балансе при нагреве дутья, влияющие на расход кокса, сводятся к следующему:
1. При повышении нагрева дутья уменьшается относительный расход кокса, а следовательно, уменьшается и количество газа на единицу чугуна. Меньшее количество газа, встречая то же количество железорудных материалов, передает им то же, что и ранее, количество тепла. В результате газ охладится больше и уйдет из печи с более низкой температурой. Таким образом, меньшее количество менее нагретого колошникового газа унесет меньше тепла из печи, увеличивая тепловой к. п. д. печи.
2. Уменьшение расхода кокса с повышением нагрева дутья при неизменном его количестве увеличивает производительность печи, а это значит, что в расчете на единицу чугуна уменьшаются тепловые потери с охлаждающей водой и в атмосферу через кладку печи. Эта статья также экономит тепло, увеличивая к.п.д. печи.
3. С уменьшением относительного расхода горючего уменьшается количество шлака вследствие уменьшения количества золы кокса и расхода флюса на ее ошлакование. Чем меньше количество шлака, тем меньше расход тепла на его нагрев. Кроме того, уменьшается расход тепла на испарение влаги и шлакование серы, так как их меньше вносится коксом. Эта статья также экономит тепло.
4. При повышении нагрева дутья возрастает температура в горне, поэтому более нагретые чугун и шлак уносят из печи больше тепла. Расход тепла увеличивается еще и потому, что при уменьшении расхода кокса и повышении температуры в горне возрастают степень прямого восстановления железа и переход кремния в чугун.
Относительная экономия тепла в доменной печи получаемая нагретом:
где Е – экономия тепла в доменной печи, отнесенная к общему расходу тепла на единицу чугуна;
q– алгебраическая сумма разностей всех статей расхода тепла на единицу чугуна при обычном (или менее нагретом) и нагретом дутье, кДж;
W – общий расход тепла в печи на единицу чугуна, кДж.
Экономия тепла и экономия кокса, не пропорциональна повышению температуры дутья, т.е. не одинакова при повышении температуры дутья на одно и то же число градусов по следующим причинам.
1. С увеличением нагрева дутья уменьшается относительный расход кокса, на сжигание которого требуется меньшее количество дутья, следовательно, выражение Vдсдtд, входящее в числитель уравнения, уменьшается, уменьшая значение величины Е.
2. С увеличением нагрева дутья уменьшается и величина q, которая при определенной температуре дутья (разной для разных условий плавки) может стать даже отрицательной и в такой мере, что числитель уравнения превратится в ноль. В этом случае экономии тепла при увеличении нагрева дутья не будет.
3. Чем выше нагрев дутья, тем полнее используется тепло в доменной печи, т. е. выше тепловой к. п. д. печи kT за счет уменьшения потерь тепла с колошниковым газом, так как при уменьшении относительного расхода кокса уменьшаются количество колошникового газа и его температура, уменьшаются тепловые потери с охлаждающей водой и в атмосферу в расчете на единицу чугуна вследствие увеличения производительности печи.
4. Общий расход тепла W с увеличением нагрева дутья уменьшается, а так как величина W входит в знаменатель уравнения, то с ее уменьшением экономия тепла возрастает. Это единственная величина, способствующая возрастанию экономии тепла при увеличении нагрева дутья, однако ее влияние на общее изменение значения невелико по сравнению с влиянием трех предыдущих факторов.
Повышение температуры дутья на каждые 10 ºС в интервале от 1000 до 1300 ºС обеспечивает повышение производительности на 0,2-0,3% и снижение расхода кокса на 0,2-0,3%.
Современные доменные печи работают на дутье с температурой до 1250ºС. Дальнейшее повышение температуры дутья сдерживается возможностями воздухонагревателей и несовершенством конструкции фурменных приборов.
Естественная влага, содержащаяся в дутье, при высокой температуре в зоне горения диссоциирует на водород и кислород с поглощением большого количества тепла
Кислород влаги, так же как и кислород дутья, взаимодействует с углеродом кокса с СО
Суммируя реакции получим
Переходящие в газовую фазу продукты реакции водород и оксид углерода принимают затем участие в НВ.
Естественная влажность воздуха колеблется в значительных пределах как и течение суток, так и по временам года на 8–12 г в 1 м 3 воздуха, или на 1–1,5% по объему.
Колебания влажности дутья вызывают изменения в тепловом и температурном режиме горна и в ходе восстановления, что приводит к расстройствам хода печи, ухудшая технико-экономические показатели.
Устранить колебания естественной влажности можно двумя путями: осушением дутья и увлажнением дутья в таких пределах, чтобы влажность его была несколько выше естественной, но постоянной во времени. Второй путь является более простым и менее затратным, и применяется овсеместно.
Для обеспечения стабильной влажности дутья применяют его увлажнение путем добавления в дутье водяного пара. После стабилизации влажности дутья получили увеличение производительности на 10–16% и снижение расхода кокса на 3,5–5,8% при одновременном повышении температуры дутья на 200–250 град и количества дутья на 5–7%.
При увлажнении дутья повышение производительности печи достигается за счет более ровного хода печи, обогащения дутья кислородом влаги, снижения расхода кокса и некоторого увеличения количества дутья.
Снижение расхода кокса достигается вследствие повышения восстановительной способности газа. Образующиеся при разложении влаги восстановительные газы Н2 и СО увеличивают НВ в зоне умеренных температур, уменьшая ПВ, которое протекает с поглощением тепла. Однако снижение расхода кокса может быть получено только при условии компенсации затрат тепла на разложение влаги и нагрев образовавшихся продуктов разложения влаги до температуры в зоне горения из расчета 72 град на 1% влаги в дутье, или 9 град на 1 г Н2О в 1 м 3 дутья.
Но достоинства увлажненного дутья не исчерпываются его интенсифицирующим действием. Увлажненное дутье позволяет быстро и эффективно влиять на тепловое состояние печи, являясь мощным фактором регулирования доменного процесса «снизу». При возникновении горячего хода его быстро устраняют увеличением содержания влаги в дутье. При похолодании нормальный нагрев восстанавливают уменьшением содержания влаги в дутье.
При выборе влажности дутья следует учитывать, что ее увеличение без компенсации затрат тепла на разложение влаги, ведет к ухудшению ТЭП доменной плавки (см. таблицу 2).
Обогащение дутья кислородом
При обогащении дутья кислородом изменяются следующие параметры (рисунок 36):
1. Уменьшается расход дутья на единицу сжигаемого у фурм углерода, так как при повышении содержания кислорода в дутье соответственно уменьшается содержание азота.
2. Уменьшается количество горнового газа на единицу сжигаемого у фурм углерода вследствие уменьшения содержания азота в дутье.
3. Повышается концентрация СО в горновом газе вследствие уменьшения разбавления его азотом.
4. Значительно возрастает температура в зоне горения, так как уменьшается объем образующихся газов.
Рисунок 36 — Изменение некоторых параметров процесса при обогащении дутья кислородом
Перечисленные изменения параметров горения углерода у фурм при обогащении дутья кислородом вызывают как положительные, так и отрицательные изменения в ходе доменного процесса и его тепловом балансе.
- При обогащении дутья кислородом снижается перепад давления газов между горном и колошником вследствие уменьшения выхода горнового газа на единицу сжигаемого углерода и скорости движения газов в столбе шихтовых материалов. Это позволяет увеличить расход дутья в единицу времени, т. е. увеличить количество сжигаемого в единицу времени кокса и соответственно повысить производительность печи.
- При этом резко повышается температура фурменных газов, увеличивается их объем, что может стать причиной «нижних» подвисаний, то есть прекращения схода шихты в фурменные очаги из-за уровновешивания шихты подъемной силой газа. Поэтому повышение концентрации кислорода в дутье можно вести до температуры в фурменном очаге не выше 2200-2400°С. Дальнейшее обогащение дутья кислородом должно сопровождаться мерами по снижению температуры горения: увлажнение дутья или применение природного газа.
- Повышение концентрации окиси углерода в газе увеличивает непрямое восстановление, соответственно уменьшая расход тепла на ПВ при условии, если будет обеспечено достаточное количество газов и их рациональное распределение.
- Уменьшение количества горнового газа и повышение его температуры изменяют условия теплообмена так, что тепло от газов к шихте очень интенсивно передается в нижней части печи. В верхние зоны печи газ приходит с более низкой температурой, чем при обычном дутье.
- Меньшее количество колошникового газа и более низкая его температура уменьшают количество уносимого с газом из печи тепла, способствуя экономии кокса. Наконец, увеличение производительности печи при обогащении дутья кислородом уменьшает потери тепла в расчете на единицу чугуна.
Наибольший эффект от кислородного дутья там, где выше развита степень прямого восстановления, ниже температура дутья и выше температура колошника, т.е. при выплавке доменных ферросплавов.
Уменьшение количества и понижение температуры колошникового газа, а также уменьшение потерь тепла с охлаждающей водой и в атмосферу в расчете на единицу сплава вследствие повышения производительности дают значительную экономию кокса.
Так, обогащение дутья кислородом на каждый 1% в диапазоне от 25 до 30% позволяет повысит производительность на 1,6-2,4%. Наилучшие результаты от применения кислорода достигаются при одновременном использовании природного газа.
Металлолом
Улучшение подготовки и качества сырых материалов
Основные мероприятия в области подготовки сырья должны быть направлены на повышение прочности агломерата, отсев мелких фракций, улучшение однородности гранулометрического состава, обеспечение постоянного среднего химического состава сырья. Повышение содержания железа в сырье на 1 % сопровождается повышением производительности печи на 2,5 % и снижением расхода кокса на 1,5—2,0 %. Замена обычного агломерата офлюсованным позволяет исключить из шихты доменной печи известняк. Снижение расхода известняка на 100 кг/т чугуна приводит к снижению расхода кокса на 3 %• Понижение содержания мелочи в шихте улучшает газопроницаемость столба шихтовых материалов и обеспечивает более равномерный ход газов в шахте печи. Уменьшение содержания мелочи в агломерате на 10 % приводит к увеличению производительности доменной печи на 10 %• Немаловажное значение имеет и улучшение качества кокса. Чем прочнее кокс, тем лучше работает печь. Необходимо принимать меры к снижению содержания в коксе золы и серы. Каждый килограмм серы, выведенный из состава шихты, дает экономию
17—20 кг кокса, а снижение содержания серы в коксе на 1 % приводит к уменьшению его расхода на 2,5 % и на столько же повышает производительность печи.
Применение высоконагретого дутья
Впервые нагрев дутья в доменной плавке применили в 1829 г. Первоначально дутье подогревали лишь до 1500C. По мере развития конструкций воздухонагревателей температура дутья постепенно повышалась и в настоящее время достигла 1350 °С. Повышение температуры дутья является одним из самых действенных факторов по снижению расхода кокса. С горячим дутьем в доменную печь поступает большое количество физического тепла. Это заменяет тепло, которое получают от сжигания кокса. Причем для создания такого количества тепла в горне доменной печи, которое вносится с воздухом, необходимо было бы получить тепла от сжигания топлива больше, чем вносится с дутьем, так как при сжигании топлива образуются газы, которые, уходя из доменной печи, уносят часть тепла. В то же время тепло дутья практически полностью используется на прямое восстановление элементов, перевод серы в шлак и нагрев чугуна и шлака.
При повышении температуры дутья от 1000 до 1200 0C расход кокса снижается на 4,5 %. В ближайшее время ставится задача повысить температуру дутья до 1250— 14000C, что потребует разработки новых конструкций воздухонагревателей и более стойких огнеупоров.
Обогащение дутья кислородом
Первые работы в мире по обогащению доменного дутья кислородом были проведены в СССР под руководством акад. И. П, Бардина.
С повышением содержания кислорода в дутье увеличивается количество сжигаемого кокса и материалов, проплавляемых в единицу времени, вместе с тем уменьшается количество тепла, выносимого с балластным азотом из горна печи. Температура в горне значительно повышается, улучшается отдача тепла от горновых газов шихте и газы приходят к колошнику печи более холодными. При обогащении дутья кислородом можно увеличить общее количество дутья, подаваемого в печь в единицу времени, что будет способствовать повышению производительности печи. Однако только обогащение дутья кислородом эффективно лишь при выплавке доменных ферросплавов, так как высокая температура в горне печи обеспечивает преимущественное развитие процессов прямого восстановления трудновосстановимых оксидов, что ограничивает повышение температуры н горне. Высокая газопроницаемость шихты благодаря более высокому расходу кокса при выплавке ферросплавов позволяет значительно форсировать ход печи.
При выплавке передельных чугунов в результате резкого повышения температуры в горне проходимость газов через слои шихты снижается. Кроме того, при температуре
20000C происходит интенсивная возгонка монооксида кремния SiO. Он конденсируется в зонах с более низкой температурой в виде тонкодисперсных частиц, уменьшающих газопроницаемость шихты. При повышении содержания кислорода в дутье на 2—3 % печь работает хуже. Повышение концентрации кислорода в дутье >23—24 % при выплавке передельного чугуна сопровождается замедлением плавки и подвисанием шихты. Для устранения этих нежелательных явлений и повышения производительности печи необходимо с дутьем вдувать добавки, понижающие температуру в горне. При этом возможно довести содержание кислорода в дутье до 35%. Такими добавками являются природный газ и мазут. При увеличении содержания кислорода в дутье до 30% производительность печи повышается на 10%, а расход кокса уменьшается на 9 %.
Вдувание в печь природного газа
Самой дорогой составляющей шихты доменного процесса является кокс. На долю кокса приходится 40— 50 % себестоимости передельного чугуна. Наиболее эффективным методом снижения расхода кокса является применение природного газа. Вдувание его в горн через фурмы вместе с нагретым дутьем получило наибольшее распространение. Природный газ состоит в основном из метана CH4 (>90 %). При попадании в зону высокой температуры метан разлагается по реакции CH4=C+ +2Н2. Углерод сгорает: 2С + 02=2С0 и суммарная реакция сгорания природного газа может быть выражена уравнением 2СН4+02 = 2С0+4Н2. В результате этой реакции горновой газ обогащается восстановительными газами. При сжигании природного газа возрастает количество доменных газов, если сравнивать в пересчете на 1 кг углерода, что затрудняет опускание шихты в доменной печи. Использование природного газа приводит к понижению температуры горения у фурм. Само по себе использование природного газа в доменной печи не приводит к заметному повышению производительности доменной печи. Для получения необходимого эффекта вдувание природного газа должно сопровождаться либо повышением температуры дутья, либо обогащением дутья кислородом. Эффективность использования природного газа в доменной печи заключается в увеличении содержания восстановителей в доменном газе, повышении доли реакций косвенного восстановления оксидов, что обеспечивает снижение расхода кокса.
Наибольшая доля в экономии кокса получается от увеличения косвенного восстановления благодаря повышению содержания водорода в горновых газах. Если при обычном дутье участие водорода в косвенном восстановлении составляет 7—9 %, то при вдувании природного газа оно возрастает до 25—30 %. Применение комбинированного дутья, состоящего из воздуха, обогащенного кислородом, и природного газа, решает проблемы, возникающие при использовании природного газа и кислорода по отдельности. Так, применение природного газа сопровождается увеличением количества горнового газа с понижением температуры в горне, а обогащение дутья кислородом ограничивается, наоборот, чрезмерным повышением температуры в горне. При этом объем горнового газа уменьшается. Совместное же применение этих двух интенсификаторов позволяет усилить положительный эффект каждого из них и взаимно компенсировать их недостатки. Однако необходимо строго регламентировать расход природного газа и кислорода с учетом других условий работы печи (качество сырья, нагрев и влажность дутья и т. п.). Для сохранения ровного форсированного хода печи на каждый кубический метр вдуваемого природного газа повышают расход кислорода на 1,6—2,0 M3j при этом расход дутья уменьшают на 1,5—1,8 %• Расход природного газа на дутье обогащенным кислородом до 30% составляет —150—200 м3/т чугуна.
Использование мазута и каменноугольной пыли
На многих доменных печах через воздушные фурмы при помощи форсунок с успехом вдувают в печь мазут. Расход мазута составляет 60 кг/т чугуна. Это топливо вызывает в доменном процессе те же изменения, что и природный газ. При горении мазута в печь вносится больше тепла, чем при горении природного газа, углерод мазута заменяет часть углерода кокса, водород усиливает косвенное восстановление оксидов. Использование мазута повышает производительность доменных печей на 2 % и снижает расход кокса на 10—12 %•
Более перспективным методом является вдувание в печь каменноугольной пыли. Количество пыли, вводимой в печь, составляет 60—80 кг/т чугуна, что понижает расход кокса примерно на такое же количество. Вдувание угольной пыли требует разработки процессов ее подготовки: измельчения, осушения, транспортировки. Еще более эффективным средством снижения расхода кокса является совместное применение природного газа и угольной пыли.
Повышение давления газов в печи
Этот способ интенсификации был впервые предложен инженером П. М. Есманским в 1915 г., но долгое время он не использовался, а только в 1941 г. по инициативе И. И. Коробова (директора завода им. Петровского) были начаты промышленные опыты. В настоящее время этот способ широко используется на заводах СССР. Повышение давления газа в печи значительно увеличивает производительность печи и несколько снижает расход кокса.
Повышение давления в печи можно иллюстрировать следующим примером: без повышенного давления на колошнике давление газа составляло 110 кПа, при этом давление дутья у фурм составляло 230 кПа, т. е. перепад давления Др=р0Р—рк = 230—110=120 кПа.
При повышении давления газа под колошником печи до 250 кПа стало возможным повысить давление дутья у фурм до 350 кПа, т. е. на 40 %, при этом перепад давления даже уменьшился: Др = 350—250=100 кПа.
Кроме повышения производительности печи и снижения расхода кокса, повышение давления способствует уменьшению выноса пыли вследствие снижения скорости газов на колошнике. В настоящее время новые печи работают с давлением газа на колошнике >250 кПа, что позволило повысить их производительность на 4—15 % и снизить расход кокса на 3—7 %, при этом вынос пыли уменьшился на 20—50 %•
Совершенствование методов управления процессом
Современная доменная печь является высокомеханизированным агрегатом. Управление многими процессами автоматизировано и осуществляется без вмешательства человека. Так, работой доменной печи № 9 объемом 5000 м3 Криворожского завода управляет вычислительная машина.
Для дальнейшей интенсификации процесса перспективным методом является автоматизация управления распределения материалов на колошнике. Вычислительная машина управляет по программе работой вращающегося распределителя шихты.
Дутье и природный газ автоматически распределяются по фурмам, регулируется соотношение дутье — природный газ. При совершенствовании распределения дутья по окружности печи производительность печей увеличивается на 2—4 % и расход кокса снижается на 1— 3 %•
Недостатком систем распределения дутья по фурмам является низкая стойкость дроссельных клапанов, которые при температуре дутья 12000C требует замены через два—три месяца работы. Необходимо изыскивать более жаропрочные материалы для конструкции клапанов. В настоящее время можно ставить задачу комплексной автоматизации всего доменного процесса; применение ЭВМ позволит управлять также и тепловым режимом печей.
Вдувание природного газа в горн печи
Вдувание природного газа существенно меняет характеристики отдельных явлений доменной плавки и прежде всего тепловые и газодинамические условия работы печи.
При горении углерода метана и других углеводородов на 1 кг С, сгорающего до оксида углерода, выделяется значительно меньше тепла, чем при горении углерода кокса. Это объясняется существенной затратой тепла на разложение углеводородов.
Учитывают также, что природный газ подается в доменную печь холодным, так как при нагреве природного газа свыше 500—600 °С протекает реакция его пиролиза с разложением на водород и сажистый углерод. Последний осаждается в газопроводах, затрудняя движение газа. Таким образом, при замене углерода кокса углеродом природного газа приток тепла в доменную печь снижается. Это является первым следствием использования комбинированного дутья.
где — доля кислорода в сухом дутье.
При использовании атмосферного воздуха ( = 0,21) коэффициент при азоте N2 =1,88. Тогда при горении единицы углерода природного газа в горне образуется 4,88 моля газа, а при горении углерода кокса — 2,88. Таким образом, вторым следствием вдувания природного газа является то, что в горне образуется больше газа по сравнению с обычной технологией.
Снижение прихода тепла в горне печи и рост количества газа в горне вызывают снижение температуры в горне (на 3—4 °С/м 3 природного газа). Это — третье следствие вдувания природного газа.
Увеличение количества газов, приходящихся на единицу сгорающего на фурмах углерода, должно вызывать снижение интенсивности плавки по коксу.
Кроме того, снижение расхода кокса вызывает уменьшение порозности шихты, а следовательно, и повышение сопротивления ее проходу газа.
При вдувании природного газа в горновом газе значительно увеличивается содержание водорода, что снижает вязкость и плотность газа. Это позволяет несколько повысить скорость газа в печи, не увеличивая перепада давления газа в печи.
Каждый 1% водорода газа вызывает рост интенсивности плавки на 0,5%. Поэтому расчеты по формуле (4.329) дают завышенные по сравнению с полученными на практике значения снижения интенсивности плавки (рис. 4.107). Некоторое снижение интенсивности плавки компенсируется ростом рудной нагрузки на кокс, в результате чего производительность печи при плавке на природном газе не только не ]уменьшалась, но, напротив, даже несколько увеличивалась. Это — четвертое следствие использования природного газа в печи.
Практические данные показали, что степень использования монооксида углерода при вдувании природного газа по сравнению с обычной технологией меняется мало. В связи с этим можно предположить, что изменение степени непрямого восстановления происходит в результате восстановительной работы водорода.
Итак, пятым следствием использования природного газа является снижение степени прямого восстановления. Эффективность использования природного газа связана с величинами степеней использования химической энергии монооксида углерода и водорода. Зависимость степеней использования монооксида углерода и водорода от количества вдуваемого природного газа на различных доменных печах проявляется по-разному. Несмотря на то что с ростом количества газа-восстановителя степень его использования должна испытывать тенденцию к снижению, в ряде случаев наблюдали обратную картину, что объясняют совершенствованием газораспределения в печи и другими технологическими обстоятельствами.
Заметное влияние использование углеводородов оказывает на теплообмен в доменной печи. Прежде всего снижается отношение что вызывает повышение температуры колошникового газа. Это — шестое следствие вдувания углеводородов в доменные печи.
Вдувание природного газа вызывает уменьшение суммарного коэффициента теплоотдачи в нижней части печи (из-за снижения температуры фурменных очагов) и его увеличение в верхней. Таким образом, вдувание природного газа приводит к выравниванию интенсивности процессов теплопередачи по высоте печи. В нижней, наиболее напряженной с точки зрения теплообмена зоне она снижается, в верхней возрастает. Это седьмое следствие вдувания природного газа в горн печи. Снижение прихода тепла в горн и уменьшение температур в горне должно увеличивать размеры окислительной зоны, что благоприятно скажется на сходе материалов. Это — восьмое следствие вдувания природного газа.
Вдувание природного газа в горн имеет следствием некоторое уменьшение химического нагрева чугуна из-за снижения в нем содержания трудновосстановимых элементов, в первую очередь кремния. Однако физический нагрев чугуна при этом меняется мало. Это — девятое следствие вдувания природного газа. Оценка воздействия вдувания природного газа в горн приводит к выводам:
1. Достигается экономия кокса
2. Снижение интенсивности плавки должно привести к уменьшению производительности печи, однако этого не происходит из-за роста рудной нагрузки на кокс. В результате имеют даже некоторое (небольшое) увеличение производительности.
3. Количество вдуваемого в печь природного газа ограничивается двумя факторами: нарушением газодинамических условий в печи и снижением температуры горна.
Вдувание мазута в горн печи
Мазут оказывает аналогичное природному газу воздействие на доменную плавку. Отличие заключается в том, что мазут при горении у фурм вносит в печь больше тепла (из-за меньшей теплоты разложения и большего количества углерода), образует в горне несколько меньше горновых газов и вносит в печь меньше водорода. Теплота сгорания мазута у фурм составляет 6100—6400 кДж/кг, т. е. несколько меньше, чем для кокса, и значительно больше, чем для природного газа. Вдувание мазута в горн вызывает некоторое (но меньшее по сравнению с природным газом) снижение температуры в горне печи. Опыт промышленного производства показал, что 1 кг мазута экономит 0,9-1,3 кг кокса. При пересчете с кокса на углерод кокса коэффициент замены 1 кг углерода кокса на 1 кг углерода мазута kт составит следующую величину: допускают, что коэффициент замены равен 1,2 кг/кг; в 1,2 кг кокса (при содер-
жании углерода в коксе 85%) содержится 1,2-0,85 = 1,02 кг углерода; в 1 кг мазута, содержащем 84% углерода, находится 1,0*0,84 = 0,84 кг углерода. Тогда коэффициент замены составит 1,02/0,84 = 1,21 кг углерода кокса/кг углерода мазута, что существенно ниже, чем в случае замены кокса природным газом. С увеличением количества вдуваемого мазута экономия кокса и коэффициент замены кокса мазутом снижаются. На рис. 4.112 приведена зависимость коэффициента замены кокса мазутом от количества вводимого в горн мазута (по данным фирмы «Феникс Рейнрор», ФРГ).
Основной эффект воздействия мазута связан с прямой заменой углерода кокса углеродом мазута. Поскольку в печь вносится водорода значительно меньше, чем с природным и коксовым газами, влияние улучшения восстановительных условий, в частности снижение степени прямого восстановления, проявляется в меньшей степени.
По сравнению с природным газом и коксом мазут вносит в печь больше серы. Однако промышленный опыт показал, что на содержание серы в чугуне это не влияет.
Определенной проблемой являются транспортировка мазута в печи и его равномерная подача в зону горения. Высокая вязкость холодного мазута вызывает необходимость некоторого его подогрева.
Ограничения количества вдуваемого в печь мазута те же, что и в случае использования природного газа, а именно, ухудшение газодинамики плавки и снижение температуры в горне печи. Вдуванию большого количества мазута в горн препятствует также то обстоятельство, что в фурменной зоне горит только часть мазута; выделяющийся сажистый углерод нарушает ход плавки.
Вдувание угля в горн печи
Большим преимуществом пылевидного угля по сравнению с другими видами топлива является его низкая стоимость. При вдувании измельченного твердого топлива затраты и тепла на процессы термического его разложения небольшие, что обеспечивает сравнительно высокий (особенно по отношению к при родному и коксовому газам) приход тепла в горн доменной печи.
Основным следствием воздействия измельченного угля на процесс является непосредственная замена углерода кокса углеродом угля Поэтому коэффициент замены кокса углем во многом зависит от свойств угля, в частности от содержания в нем углерода, золы, серы и влаги. Чем выше содержание углерода в угле, тем большее значение имеет прямая замена им углерода кокса, тем выше приход тепла и горн лечи и выше коэффициент замены кокса углем. В отличие от газообразных и жидких восстановителей уголь практически не содержит водорода (кроме содержащегося в летучих и водяном паре), поэтому вдувание угля в горн оказывает слабое влияние на ход восстановительных процессов. Зола угля несколько увеличивает выход шлака в печи, что снижает экономию кокса при вводе угля в печь. Сера, вносимая углем, может частично переходить в чугун, что требует ограничения используемых углей по их сернистости. При вдувании угля газодингамические условия плавки практически не меняются. В связи с этим лимитирующим фактором количества используемого твердого топлива является нагрев горна. Уменьшение прихода тепла в горн из-за меньшей по сравнению с коксом теплоты сгорания угля и наличия водяных паров, претерпевающих в горне диссоциацию, приводит к снижению температуры горна. Поэтому в доменной плавке следует использовать высушенные угли.
На основе результатов многочисленных исследований на горячих стендах и на доменных печах в настоящее время хорошо известны условия, которые обеспечивают замену до 40—45% кокса вдуваемым пылеугольным топливом. К ним относятся:
1. Высокое качество кокса, применяемого в доменной плавке.
2. Высокое качество угля, используемого для вдувания в доменную печь.
3. Применение специальной техники вдувания, обеспечивающей полноту сжигания угля в фурменной зоне.
4. Обогащение дутья кислородом и вдувание кислорода совместно с углем.
При вдувании большого количества угля уменьшается объемная доля кокса в шихте, что повышает требования к обеспечению газопроницаемости столба шихты в шахте и коксового тотермана в горне. Главным условием выполнения этих требований является применение высококачественного кокса, обладающего высокой холодной и горячей прочностью.
Требования к качеству углей для вдувания в доменную печь сводятся к следующему:
• низкая зольность (не более 10—12%);
• высокое содержание летучих (30-40%);
• низкое содержание серы (не более 1%);
• высокая температура плавления золы (более 1400 °С);
• тонкое измельчение (80% крупностью 200 мм);
Особое значение имеет зольность вдуваемого угля, которая определяет коэффициент замены кокса углем, влияет на содержание кремния в чугуне и на выход шлака. Кроме того, абразивные свойства угля, влияющие на стойкость трубопроводов системы его вдувания, также определяются зольностью угля.
В связи со снижением газопроницаемости столба шихты при вдувании значительных количеств ПУТ и для поддержания производительности печей на необходимом уровне расход дутья сокращают, обогащая его кислородом. Особенностью технологии плавки при вдувании ПУТ является создание в осевой части печи коксовой отдушины из крупного кокса. На печах с конусными аппаратами для этого применяют специальные приемы загрузки. Для вдувания используют угли как с высоким, так и с низким содержанием летучих веществ. В связи с тем, что уголь не успевает сгорать в фурменной зоне, считают что для вдувания лучше использовать угли, несгоревшие частички которых имеют повышенную реакционную способность.
Экономическая эффективность доменного процесса при изменении условий работы доменной печи
Для определения и суммируют влияние всех изменяющихся по отношению к базовому периоду параметров (факторов ) плавки на расход кокса и производительность печи:
1.1Понятие экономической эффективности доменного процесса
Экономическая эффективность доменного процесса оценивается по показателям интенсивности доменного процесса.
Для того чтобы Оценить интенсивность доменного процесса используют следующие показатели:
1. Удельный расход кокса(размерность кг/т чугуна чем этот показатель меньше тем интенсивнее работает печь.
3. Кипо- коэффициент использования полезного объёма доменной печи
Интенсификация доменного процесса- это ускорение или увеличение скорости протекания процесса с целью повышения производительности доменной печи.
Повысить интенсивность хода доменной печи можно двумя способами:
1) Создать условия, при которых в гори можно подать больше количества дутья для сжигания кокса.
2) Создать условия обеспечивающих снижения расхода кокса на единицу выплавляемого чугуна.
При условии сохранении tрежима интенсификация будет более эффективной, если мы сможем выполнить сразу два условия.
При увеличении количества вдуваемого дутья необходимо обеспечить повышенную газопроницаемость шихтовых материалов, чтобы они смогли пропустить через себя больше газа.
Для уменьшения расхода кокса необходимо применения заменителей кокса и уменьшать тепловые затраты на процесс.
Читайте также:
- Замена шаровых кранов отопления в квартире
- Гидрозатвор в котельной принцип работы
- Котел протерм ошибка f3
- Отопление частного дома сжиженным газом
- Отличие котлов протерм klom от plo
Источник https://enersb.ru/domennaya-pech/2-5-metody-intensifikacii-domennogo-processa/
Источник https://revolution.allbest.ru/manufacture/00767866_0.html
Источник https://stroitelstvo-gid.ru/otoplenie/chem-mozhno-povysit-proizvoditelnost-domennoj-pechi.html